
Temporal Coding

There is a rapidly accumulating body of empirical evidence which demonstrates that spike timing 
patterns of sub-millisecond precision are reliably generated in the sensory cortices1

However, the task of investigating temporal coding is one of great empirical difficulty, requiring 
simultaneous recording from a large number of single neurons over extended time periods2

Several computational models, utilising spiking neural networks and spike-timing driven plasticity 
rules, have begun to examine methods for the supervised learning of temporally coded patterns

These have generally demonstrated that a single neuron can be trained to fire at some specific time in 
response to a specific spatiotemporal input pattern3

However,  each of these models neglects axonal delays, and thus rely on afferent firing within the 
timescale of membrane integration

The supervised learning mechanisms employed are also frequently biologically infeasible4

 

Polychronous Groups and Synfire Chains

Polychronous groups (PCGs) and synfire chains are putative temporally coded cell assemblies that 
reliably reproduce specific spatiotemporal activity patterns with millisecond precision

The self-organisation of both PCGs and synfire chains has been demonstrated in neural network 
models that utilise spike-timing dependent plasticity (STDP)5

Temporally coded cell assemblies can be constructed that perform Boolean logic operations6

The capacity for PCGs / synfire chains within a network exceeds the number of synapses

However, the use of supervised learning to create PCGs / synfire chains that perform a specified 
spatiotemporal activity mapping has yet to be demonstrated

The Neuronal Replicator Hypothesis

We have previously proposed that a constrained natural selection algorithm operates within the brain 
at very rapid timescales in order to solve high-dimensional and rugged search problems7

The units of neuronal selection must be entities that replicate and exhibit hereditary variation

We have presented several hypothetical methods of neuronal replication, including the copying of 
neuronal topologies and bi-stable activity patterns8

Here, we investigate the phenotypic copying of temporally coded cell assemblies (i.e. PCGs) in a 
spiking neural network using a biologically inspired supervised learning algorithm

This forms a conceptual framework for the consideration of how neuronal replication may operate 
within and between cortical columns in order to replicate spatiotemporal activity mappings (i.e. PCGs) 
with heredity and mutation
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The Network Model
Feed-forward architecture (corresponding to an abstract cortical column)

Simulated ‘Izhikevich’ neurons with randomly assigned axonal delays9

Sub-threshold synaptic weights (such that >2 afferent spikes are required to fire a neuron)

Spike- and Input- timing dependent plasticity (ITDP)10

Spatiotemporal activity patterns provided to input layer and laterally to train output layer

Synaptic scaling mechanism11

Figure 1: The Network Model

Input-timing Dependent Plasticity

Recent observations of Input-timing dependent plasticity (ITDP) in the hippocampus have 

demonstrated that afferent input to distal synapses - although relatively ineffective at driving 

post-synaptic firing - modulates the induction of LTP at proximal synapses within a certain temporal 

window (Figure 2). Here, we propose that similar mechanisms in the cortex could provide a biological 

correlate for the supervised learning of spatio-temporal mappings. 

Figure 2: Input-timing dependent plasticity

Supervised Learning of Spatiotemporal Mappings

During supervised learning, neurons in the middle layer with input delays that correspond to the 
temporal latency of input firing are selectively activated

Potentiation of connections between the middle and output layers depends on the timing of afferent 
firing (STDP) and is modulated by ITDP

Scaling is required to prevent excess synaptic input to output neurons (causing latency reduction)

Following supervised learning, the network selectively performs the desired spatiotemporal activity 
mapping only when the latency of firing in input neurons matches the learned input pattern

The internal structure of different networks that are trained to perform this spatiotemporal activity 
mapping varies significantly - this is a phenotypic copying process

The fidelity of copying depends on the repertoire of inter- and intra- layer connections and their 
axonal delays, and is thus noisy and stochastic

These properties could correspond to heredity and mutation during replication?

Figure 3: Learning spatiotemporal activity mappings with STDP and ITDP

Discussion

We have introduced a novel, biologically inspired methodology for the supervised learning of 
spatiotemporal activity mappings (i.e. PCGs) in feed-forward networks

This model can be generalised to include multiple intermediate layers, each of which is trained to 
selectively produce specific spatiotemporal activity patterns in response to specific temporal input 
correlations

This provides a conceptual framework for the consideration of temporally-coded, phenotypic neuronal 
replication in the human cortex

Hypothetically, by lateral transmission of input and output signals, multiple cortical columns can be 
trained to produce the same spatiotemporal activity mapping with heredity and mutation

Analysis of the emergent properties and wider implications of this model are currently underway
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