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ABSTRACT 

 

Auto-associative network models have proven extremely useful in modelling the hypothesised function 

of the CA3 region of the hippocampus in declarative memory. To date, the majority of these models 

have made use of Hebbian plasticity rules mediated by correlations between mean firing rates. 

However, recent neurobiological evidence suggests that synaptic plasticity in the hippocampus, and 

many other cortical regions, also depends explicitly on the temporal relationship between afferent 

action potentials and efferent spiking – a phenomena known as spike-timing dependent plasticity 

(STDP). Few attempts have been made to reconcile previous rate-coded Hebbian learning rules or auto-

associative network function with this novel plasticity formulation. Further complications arise from 

the fact that there are many computational interpretations of the empirical data regarding STDP, each 

of which can have a unique effect on emergent network properties. The aims of this research are 

therefore three-fold: firstly, to provide a comprehensive description of the emergent dynamics 

generated by a wide range of STDP implementations within a biologically inspired spiking recurrent 

neural network; secondly, to reconcile these emergent dynamics with those generated by previous rate-

coded Hebbian learning rules, as characterised by the BCM formulation; and finally, to employ these 

STDP implementations within a simple rate-coded auto-associative network model. The results 

presented demonstrate that several incarnations of the STDP rule can mediate rate-coded Hebbian 

learning and replicate numerous other features of synaptic and neural dynamics that are realistic of the 

CA3 region. These forms of STDP are consequently demonstrated to mediate efficient and robust auto-

associative network function, although several issues which might affect the long-term stability and 

performance of the plasticity rule are identified and discussed. The results should therefore allow the 

successes of previous auto-associative network models of the hippocampus to be replicated, whilst 

increasing their versatility and computational power and providing them with a firmer basis in modern 

neurobiology. 
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“Man is a reasonable being; and as such, receives from science his proper food and nourishment: But 

so narrow are the bounds of human understanding, that little satisfaction can be hoped for in this 

particular, either from the extent or security of his acquisitions. Man is a sociable, no less than a 

reasonable being: But neither can he always enjoy company agreeable and amusing, or preserve the 

proper relish for them. Man is also an active being; and from that disposition, as well as from the 

various necessities of human life, must submit to business and occupation: But the mind requires some 

relaxation, and cannot always support its bent to care and industry. It seems, then, that nature has 

pointed out a mixed kind of life as most suitable to human race, and secretly admonished them to allow 

none of their biases to draw too much, so as to incapacitate them for other occupations and 

entertainments. Indulge your passion for science, says he, but let your science be human, and such as 

may have a direct reference to action and society. Abstruse thought and profound researches I prohibit, 

and will severely punish, by the pensive melancholy which they introduce, by the endless uncertainty 

in which they involve you, and by the cold reception which your pretended discoveries shall meet with, 

when communicated. Be a philosopher; but, amidst all your philosophy, be still a man" 

 

Hume (1777) 



CHAPTER ONE: INTRODUCTION AND OVERVIEW OF THESIS 

 
1.1 Introduction 

The phenomenon of synaptic plasticity is widely believed to mediate memory and the activity 

dependent development of neural circuits in a diverse range of species. The majority of empirical 

observations of synaptic plasticity have been made in the hippocampus – a brain region which has long 

been implicated in human declarative memory function and represents an ideal testing ground for the 

synaptic plasticity and memory hypothesis. Observations of long-term potentiation and depression 

(LTP and LTD) have most commonly been induced in this region by the tetanic stimulation of pre- and 

post- synaptic neurons. Similarly, computational models of synaptic plasticity have conventionally 

been mediated by correlations between pre- and post- synaptic firing rates. However, these models face 

a significant problem with stability, due to the positive feedback system that consequently arises 

between potentiation and post-synaptic firing rates. 

 

Recent neurobiological investigation in the hippocampus has delineated a theory of spike-timing 

dependent plasticity (STDP) which dictates that changes in the strength of synapses are primarily 

determined by the relative timing of pre- and post- synaptic spikes. STDP has proven popular in 

computational modelling studies because it appears to address the issue of positive feedback by 

stimulating competition between synapses for the control of post-synaptic firing. This competition can 

provide the unsupervised regulation of neural activity by reducing synaptic weights in response to 

increases in pre-synaptic firing rate. Although this inherent homeostasis is advantageous for the stable 

operation of artificial neural networks (ANNs), it directly contradicts previous computational models 

and observations of synaptic plasticity. Furthermore, due to the difficulty of making experimental 

observations at the synaptic level, there is little empirical data to inform the modelling choices involved 

in developing a biologically realistic STDP rule.  

 

There is a pressing need, therefore, to reconcile STDP with both rate-coded models of synaptic 

plasticity and the role of the hippocampus in declarative memory. The suspected function of the 

hippocampus has been most successfully investigated using auto-associative network models – 

recurrent ANNs which implement synaptic plasticity in order to store applied activity patterns and 

recall them at a later date from partial or noisy cues. These models are attractive because they offer a 

unified description of encoding, storage and recall processes within a single framework. Surprisingly, 

few studies have examined the emergent dynamics of STDP within a recurrent neural architecture, and 

fewer still have attempted to reconcile this asymmetric plasticity rule with auto-associative network 

function. Furthermore, common auto-associative network models of the hippocampus rely explicitly on 

a Hebbian learning mechanism, and therefore represent an ideal context in which to attempt a 

reconciliation of STDP with previous rate-coded plasticity models.  

 

Consequently, the aims of this research are three-fold: firstly, to provide an extensive characterisation 

of the emergent synaptic and neural dynamics generated by a variety of STDP implementations within 

a spiking recurrent neural network; secondly, to more specifically assess how STDP might be 



reconciled with the properties of rate-coded Hebbian learning and observations of synaptic plasticity 

made in the hippocampus; and finally, to employ those STDP implementations that can mediate rate-

coded processing in a simple auto-associative network model, and thereby assess the functional 

performance of the plasticity model within this context. It is demonstrated that STDP can mediate rate-

coded Hebbian learning and reproduce several features of synaptic plasticity observed in the CA3 

region, providing that certain constraints are placed on the profile of the asymmetric learning window 

and spike pairing scheme employed. This allows STDP to be directly reconciled with the BCM 

formulation of metaplasticity. Consequently, it is demonstrated that STDP can also mediate efficient 

and robust auto-associative network function, and some of the issues relating to the long-term stability 

of these models are discussed. 

 

The research in this thesis therefore provides the first comprehensive description of STDP in a spiking 

recurrent network model that is consistently inspired by the neurobiology of the hippocampus, the 

cortical region in which synaptic plasticity is most frequently observed in vivo. The fact that multiple 

STDP implementations are examined within a single framework facilitates comparison and allows the 

specific effects of each parameter that defines the plasticity rule to be extricated. Several forms of 

STDP that can mediate and integrate both rate and temporally coded data are identified, and these 

allow the complexity, computational power and biological realism of previous Hebbian learning rules 

to be improved without compromising their function. Finally, the first known demonstration of 

asymmetric STDP successfully mediating auto-associative network function is provided, and some of 

the issues regarding the role of the plasticity rule within this context are discussed. 

 

1.2 Thesis Overview 

 

Chapter Two provides a detailed review of the existing literature regarding the biological and 

computational properties of Hebbian learning rules and STDP. A particular emphasis is placed on the 

multiple STDP implementations which have arisen in the absence of sufficient biological data, and how 

these can affect the emergent dynamics of the plasticity rule. The common disparities between the 

properties of STDP and rate-coded Hebbian learning rules are also highlighted, and some possible 

approaches to reconciling these plasticity models are described. 

 

Chapter Three provides a detailed review of the neuroscience of the hippocampus, the cortical region 

in which empirical observations of synaptic plasticity are most often made, and describes the postulated 

role of this brain region in declarative memory. The theory that this mnemonic function is mediated, at 

least in part, by auto-associative network dynamics is introduced, and the fact that synaptic plasticity 

has a critical role in this process is emphasised. The successes of auto-associative network models of 

the hippocampus are then described, and their biological foundations examined in detail. 

 

Chapter Four identifies a shortfall in previous computational neuroscience research regarding the 

integration of STDP, rate-coded Hebbian learning and auto-associative network models of the 



hippocampus. A more detailed examination of the known properties of synaptic and neural dynamics 

within the CA3 region and how these will constrain the artificial neural network model examined in 

this research is then made.  

 

Chapter Five defines the experimental methods and details of the neural spiking, synaptic plasticity 

and network models being implemented in more detail. 

 

Chapter Six describes the results of the first set of simulations examined in this research, which aim to 

provide a detailed description of the neural and synaptic dynamics that are generated by STDP within a 

spiking recurrent network. Several key features of the STDP rule are manipulated in order to assess 

their effects on emergent properties, including the parameters which define the profile of the 

asymmetric learning window, the use of weight-dependent potentiation (i.e. multiplicative STDP) and 

the spike pairing scheme employed.  

 

Chapter Seven describes the results of the second set of simulations examined in this research, which 

aim to more specifically reconcile STDP with previous rate-coded Hebbian learning rules and 

observations of synaptic plasticity made in vivo. It is consequently demonstrated that several distinct 

STDP implementations can generate the emergent synaptic dynamics that are required for successful 

auto-associative network function. 

 

Chapter Eight describes the results of the final set of simulations examined in this research, which 

assess the functional performance of STDP within a simple auto-associative network model. Those 

forms of STDP that can mediate rate-coded learning are demonstrated to rapidly re-arrange synaptic 

weights in order to reflect discrete binary patterns of rate-coded activity, and produce significant and 

specific recall in unstimulated parts of these patterns when partial cues are subsequently applied. This 

represents the first demonstration of an asymmetric STDP rule successfully replicating the properties of 

rate-coded Hebbian learning and thereby mediating auto-associative network function.  

 

Chapter Nine describes the conclusions of this research and outlines probable directions of future 

research. These will most likely address some outstanding issues with biological realism and long-term 

stability, and also expand and develop the auto-associative network model to integrate temporal coding, 

neuromodulation and more complex learning scenarios. 

 

1.3 Previous Publications 

Several sections of the results presented in this thesis have appeared elsewhere in peer-reviewed 

publications. These are listed below.  

 

 

 

 



Chapter Six: 

Bush D, Philippides A, Husbands P and O'Shea M. “Embodied Learning : Investigating Synaptic 

Weight Distributions in a Spiking Neural Network” in Kovacs T and Marshall  JAR (eds) “The 

Proceedings of AISB‟06: Adaptation in Artificial and Biological Systems”. AISB (2006) 

 

Bush D, Philippides A, Husbands P and O'Shea M. “Investigating STDP and LTP in a Spiking Neural 

Network” in Nolfi S, Baldassarre G, Calabretta R, Hallam J, Marocco D, Miglino O, Meyer J-A and 

Parisi D (eds) “From Animals to Animats 9: Proceedings of the Ninth International Conference on 

Simulation of Adaptive Behaviour”. Springer Verlag (2006) 

 

Chapters Seven and Eight: 

Bush D, Philippides A, Husbands P and O'Shea M. “STDP and Auto-associative Network Function” in 

Mayor J, Ruh N and Plunkett K (eds) “Connectionist Models of Behavior and Cognition II: 

Proceedings of the Eleventh Neural Computation and Psychology Workshop”. World Scientific (2009) 

 

Chapter Eight and Future Directions: 

Bush D, Philippides A, Husbands P and O'Shea M. “Theta Phase Coding and Acetylcholine 

Modulation” in Asada M, Hallam JCT, Meyer J-A and Tani J (eds) “From Animals to Animats 10: 

Proceedings of the Tenth International Conference on Simulation of Adaptive Behaviour”. Springer 

Verlag (2008) 



CHAPTER TWO: SYNAPTIC PLASTICITY 

 

“The cerebral cortex is like a garden planted with innumerable trees … which, thanks to intelligent 

cultivation, can multiply their branches and sink their roots deeper, producing fruits and flowers of 

ever greater variety and quality.”  

Ramon y Cajal, 1894 

 

Aims  

 To introduce and define the concept of Hebbian plasticity, which underlies the vast majority of 

computational models of learning and activity dependent development, and the phenomena of long-

term potentiation and depression, which provide biological correlates for this process  

 To introduce the synaptic plasticity and memory (SPM) hypothesis, which postulates that synaptic 

plasticity is necessary and sufficient to mediate memory formation and storage in the brain 

 To highlight the fact that Hebbian learning is inherently unstable, and requires additional 

mechanisms that can introduce competition between synapses in order to regulate network activity 

and dynamically maintain the appropriate conditions for learning 

 To describe some common mechanisms that are employed to achieve this competition, and the 

biological data upon which they are founded 

 To introduce spike-timing dependent plasticity (STDP), a novel plasticity rule that operates using 

temporal coding, and can generate the homeostatic regulation of neural activity 

 To describe the various common STDP implementations that have been examined in previous 

modelling studies, and the emergent neural and synaptic dynamics which they generate 

 To describe the apparent inconsistencies between STDP and traditional observations of LTP / 

Hebbian learning rules, and how these might be reconciled 

 



2.1 Hebbian Learning 

In the late nineteenth century, William James formulated an elementary principle of psychology, 

“…[that] when two brain processes are active together or in immediate succession, one of them, on 

reoccurring, tends to propagate its excitement into the other” (James, 1890). A year earlier, Ramon y 

Cajal had postulated that the human brain is not a continuous web, but consists of distinct neurons 

which communicate at specialised junctions (Ramon y Cajal, 1889). A generalisation of James‟ 

concept; that activity-dependent changes in the strength of these junctions, which were later named 

„synapses‟, might underlie the phenomena of learning and memory, followed shortly (Sherrington, 

1897). This general hypothesis of synaptic plasticity, still based solely on theoretical considerations, 

was more precisely delineated by Donald Hebb almost sixty years later. He proposed “… [that] when 

an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, 

some growth process or metabolic change takes place in one or both cells such that A's efficiency, as 

one of the cells firing B, is increased” (Hebb, 1949). Hebbian learning rules, which have come to 

include any plasticity formulation that is driven by causal correlations between pre- and post-synaptic 

activity, have been at the centre of computational models of memory and the activity dependent 

development of neural circuits ever since. Equation 2.1 describes a standard form of Hebbian learning that 

has been extensively utilised in computational modelling studies (Kempter, Gerstner and van Hemmen, 

1999). 

 

jiij rrw  

 

Equation 2.1: The simplest form of a Hebbian learning rule. Changes in the weight of a synapse from neuron j to 

neuron i (∆wij) are equal to the relative rates (r) or those neurons, multiplied by a learning rate (ε) 

 

 

2.2 Long-term Potentiation 

Hebb‟s hypothesis laid the foundations for a theoretical consideration of the neurological process by 

which transient experience is translated into enduring memory. Empirical evidence to support the 

theory of long-term changes in synaptic efficacy was not obtained until many years later, however, 

from the hippocampal formation of anaesthetised rabbits by Lomo and Bliss in 1973. They 

demonstrated that the pre-synaptic delivery of tetanic, high frequency stimulation (HFS) would cause 

an increase in the size of the evoked post-synaptic potential (EPSP) that could persist for many days. 

Since this seminal finding, a wealth of neurobiological investigation has elaborated on the mechanisms 

of this long-term potentiation (LTP) of synapses. Similarly, empirical support has allowed the 

computational examination of Hebbian learning rules within artificial neural networks (ANNs) to 

flourish. Despite the massive research interest, the problems associated with examining changes at the 

synaptic level mean that the underlying biological mechanisms have proven difficult to elucidate, and 

contrasting research findings have provoked significant debate. What has been made apparent, 

however, is that long-term plasticity is an almost universal property of excitatory synapses throughout 

the mammalian brain.  

 

 

 

 



2.3 Synaptic Biology and LTP Induction 

Despite the protean nature of activity-dependent synaptic change, research has shown that distinct 

characteristics are exhibited at varying locations within the brain. It has therefore been suggested that 

LTP may be more usefully viewed as a class of cellular and synaptic phenomena, expressed differently 

depending on cortical region, stage of development, and means of induction (Malenka and Bear 2004). 

These disparities may reflect the contrasting functions which long-term plasticity mediates in various 

processes of learning and development. NMDAr-dependent LTP in the hippocampus remains the most 

extensively studied, and can be observed throughout the mammalian brain (Malenka and Nicoll, 1999; 

Malenka and Bear, 2004; see also Sheng and Kim, 2002). In the hippocampus, the majority of synaptic 

transmission is mediated by the neurotransmitter glutamate. Upon stimulation, this amino acid is 

released from the pre-synaptic bouton, flows across the synaptic cleft and binds to receptors on the 

dendrites of the post-synaptic neuron. These receptors generally fall into two categories - N-methyl-D-

aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) - which have 

distinct characteristics, responses and distributions among synapses.  

 

 
 

Figure 2.1: A typical increase in the amplitude of evoked post-synaptic currents (EPSCs) after an LTP induction 

protocol (at the black arrow) from Bi and Poo (1998) 

 

The AMPA receptor (AMPAr) is permeable to monovalent cations (Na
+
 and K

+
), and provides the 

majority of inward current for generating post-synaptic responses when a cell is close to its resting 

membrane potential. Conversely, the NMDA receptor (NMDAr) demonstrates an extreme voltage 

dependence, as its channel is normally blocked by extra-cellular Magnesium ions. When the post-

synaptic cell is hyperpolarised, therefore, this channel contributes little, but with sufficient 

depolarisation, Mg
2+

 dissociates from the NMDAr channel and drifts into the synaptic cleft, freeing the 

channel to bind with glutamate and allow an influx of Calcium ions (Bliss and Collingridge, 1993; 

Malenka and Nicoll, 1999; Bourtchouladze, 2002; Malenka and Bear, 2004). This rise in intracellular 

Ca
2+

 concentration signals the beginning of a cascade of neural events which mark the induction of 

long-term plasticity (for reviews see Bliss and Collingridge, 1993; Bear and Malenka, 1994; Malenka 

and Nicoll, 1999; Malenka and Bear, 2004; Cooke and Bliss, 2006). Hence, two events are essential to 

induce this prototypical form of LTP – the post-synaptic membrane must be sufficiently depolarised, in 

order to expel Mg
2+

 from the NMDA channels; and glutamate must simultaneously be present in order 



to bind to these open channels and allow the influx of Ca
2+

. The NMDA receptor is therefore often 

considered to be a molecular coincidence detector, which only operates under conditions of significant 

coincident pre- and post- synaptic activity. 

 

2.4 The Expression of Long-term Plasticity 

The molecular mechanisms which mediate the expression of LTP proceed through several stages 

following an influx of Ca
2+

 into the post-synaptic dendrite. Each of these stages is complex and none 

has been fully characterised by biological investigation. It is particularly difficult to differentiate 

between mediators - those molecules which are essential for LTP expression - and modulators - which 

merely regulate or adjust this expression. Well over a hundred different molecules have been 

implicated in one or another of these roles (Sanes and Lichtman, 1999; Lisman 2003; Malenka and 

Bear, 2004). For example, there are a wide variety of modulatory neurotransmitters (such as 

Acetylcholine and Dopamine) and circulating hormones (particularly those related to stress) which can 

have various effects on the induction, expression and maintenance of synaptic plasticity (e.g. 

Hasselmo, 2006; O‟Carroll et al., 2006; Mockett et al., 2007). It is also clear that, during development, 

these mechanisms can change (Esteban et al., 2003; Jensen et al., 2003; Yasuda et al. 2003). It is 

interesting to note, however, that post-synaptic Ca
2+

 influx is consistently essential for the induction of 

LTP, even at synapses where the process is not NMDAr dependent (Johnston et al., 1992; Yeckel, 

Kapur and Johnston, 1999).  

 

Initially, debate existed over whether long-term changes occur primarily at the pre- or post- synaptic 

terminal (Malenka and Nicoll, 1999; Malenka, 2003). Some evidence suggests that a rapid increase in 

the probability of neurotransmitter release (or the number of release sites) contributes, at least partly, to 

the expression of LTP, although findings are often contradictory (i.e. Larkman et al., 1992; see Crozier 

et al. 2004 and Lauri et al., 2007 for reviews). The existence of pre-synaptic changes, provoked by 

post-synaptic signals, would necessitate the existence of a retrograde messenger – a signal which 

moves backwards across the synaptic cleft from the dendrite to the bouton in order to convey the 

information that LTP has been induced (Malenka, 2003). There is some evidence – although it is not 

conclusive – that the gas Nitric Oxide (NO) operates in this role (Arancio et al., 1996; Holscher, 1997; 

Hawkins, Son and Arancio, 1998). However, a more significant body of research now suggests that the 

main (and perhaps sole) locus of LTP expression is post-synaptic. 

 

The first stage of LTP expression lasts approximately 30 – 45 minutes and is generally described as 

short-term potentiation (or STP). Little is known about the mechanisms of STP, other than the fact that 

they are independent of protein kinase activity (Sweatt, 1999). This is demonstrated by the fact that 

broad spectrum protein kinase inhibitors limit the duration of synaptic potentiation to under an hour, 

but do not prevent it altogether (Soderling and Derkach, 2000; Lisman, Schulman and Cline, 2002; 

Nguyen and Woo, 2003; Bliss, Collingridge and Morris, 2007). Much more is known about the 

following stage – early LTP (E-LTP). The influx of Ca
2+

 into a dendrite activates several kinases which 

reside within the post-synaptic density (PSD) - a concentration of AMPA and NMDA receptors, 



associated signalling proteins, scaffolding and adhesion molecules situated at the post-synaptic 

membrane. Among these are several critical mediators of E-LTP, including the Ca
2+

 / calmodulin 

dependent protein kinase (CaMKII), calcium / phospholipid-dependent protein kinase C (PKC), cAMP-

dependent protein kinase (PKA), the family of tyrosine kinases and mitogen-activated protein kinase 

(MAPK).  

 

It is hypothesised that these Calcium activated protein kinases phosphorylate certain proteins, which in 

turn regulate various properties of the post-synaptic neurotransmitter receptors in order to increase their 

efficacy (Benke et al., 1998; Malenka and Nicoll, 1999; Soderling and Derkach, 2000; see Kelly, 1991; 

Schulman, 1993; Sheng and Kim, 2002; Malenka and Bear, 2004 and Crozier et al. 2004 for reviews). 

The AMPA and NMDA receptors contain many target sites for phosphorylation, with the effect, among 

other things, of regulating their open channel probability, channel conductance and rate of 

desensitisation. Recent research, for example, has identified a CaMKII / PKC phosphorylation site on 

the AMPA receptor (Ser
831

) which is likely modified during LTP, and which increases the single 

channel conductance of the receptor (see Sheng and Kim, 2002 for a review). Transgenic mice which 

lack Ser
831

 phosphorylation show impaired LTP (Lee et al., 2003).  

 

In addition to modulating the properties of existing ion channels, it seems that these kinases also 

regulate the rate of insertion of AMPA receptors into the PSD from a latent sub-synaptic population – a 

process known as AMPAr trafficking (Lynch and Baudry, 1984). Research has demonstrated that 

significant changes in the concentration of AMPA receptors accompany long-term plastic changes in 

the strength of hippocampal synapses in vivo and in vitro, that these changes are NMDAr and CaMKII 

dependent, and that they are reversible (Hayashi et al., 2000; Heynen et al., 2000; Lu et al., 2001; see 

Malinow and Malenka, 2002; Song and Huganir, 2002; Crozier et al. 2004 and Derkach et al., 2007 for 

reviews). An increase in the number and efficacy of post-synaptic AMPA receptors provides “…an 

elegant means of producing stable, long-term biochemical changes in synaptic efficacy” (Crozier et al. 

2004). 

 



 
 

Figure 2.2: The biological mechanisms of LTP 

 

The protein kinase CaMKII is now considered to be the primary mediator of the early stages of LTP. It 

is particularly prominent in the PSD, making up ~3% of the total protein therein, and contains a dozen 

or so catalytic subunits that each have several phosphorylation sites, thus providing multiple targets for 

regulation. It is also capable of auto-phosphorylation, which means that once it has been sufficiently 

activated, the activity of CaMKII can proceed independently of an elevated Ca
2+

 concentration, thus 

allowing the mechanisms of LTP to outlast the signal which originally provoked them (Miller and 

Kennedy, 1986; Lisman and Goldring, 1988; Lisman, Schulman and Cline, 2002; Cooke and Bliss 

2006). It has been observed that the levels of auto-phosphorylated CaMKII enzyme and CaMKII 

mRNA increase in the PSD of cell bodies and dendrites in the hippocampus following LTP induction. 

Similarly, the pharmalogical inhibition of endogenous CaMKII prevents LTP induction, and transgenic 

mice which lack the alpha-isoform of this kinase exhibit deficits in LTP expression (Silva et al., 1992a, 

b; Yasuda et al., 2003). However, several other protein kinases are implicated in E-LTP expression, 

and some of these (such as PKC) also demonstrate the property of auto-phosphorylation. Furthermore, 

it is important to reiterate that the kinase cascades involved in E-LTP change profoundly during 

development (Bliss, Collingridge and Morris, 2007). 

 

During this early stage of LTP expression, an increase in synaptic efficacy can easily be reversed (i.e. 

„de-potentiated‟) by low-frequency stimulation (LFS). This form of input activates protein 

phosphatases, which initiate several signalling cascades that reverse the effects of protein kinases, and 

thus reduce or extinguish the magnitude of potentiation induced (Fujii et al., 1991; O‟Dell and Kandel, 

1994; Zhuo et al., 1999; see Section 2.7). For an increase in synaptic efficacy to become consolidated, 

protein synthesis and gene transcription are required (Krug, Loessner and Ott, 1984; Frey et al., 1988; 

Huang et al., 1996; Pittenger and Kandel, 2003; Abraham and Williams, 2003; for reviews see West, 

Griffith and Greenberg, 2002; Miyashita et al., 2008). This is demonstrated by studies which employ 

protein synthesis or transcription inhibitors to limit the duration of LTP to 5 or 6 hours (Frey et al., 



1988; Huang and Kandel, 1994; Nguyen, Abel and Kandel, 1994). Although this critical stage of late 

(or L-) LTP is only expressed after several hours, the molecular cascades which mediate it are induced 

shortly after the initial influx of Ca
2+

. This is illustrated by the fact that pharmacological inhibitors are 

only effective if delivered shortly after the initial induction of E-LTP (see Kelleher, Govindarajan and 

Tonegawa, 2004 for a review).  

 

The protein synthesis cascades involved in L-LTP are most likely triggered by the persistent activation 

of several Calcium activated kinases, such as MAPK, PKA and the adenylyl cyclases (Abraham and 

Tate, 1997). In particular, the extra-cellular signal related kinase (ERK) subfamily of MAPKs may 

represent the molecular link between early and late phases of LTP, since many of the signalling 

cascades involved in E-LTP converge on ERK (see Kelleher, Govindarajan and Tonegawa, 2004 for a 

review). Analogously to the expression mechanisms of E-LTP, the function of ERK may be to 

phosphorylate several cytoplasmic and nuclear molecules including transcription factors such as the 

cAMP response element binding protein (CREB). The effect of this phosphorylation is to stimulate de 

novo protein synthesis, including an increased production of AMPA receptors, and morphological 

changes, such as an increase in dendritic spine number and synaptic surface area.  

 

Few of the proteins whose synthesis is modulated by these processes have been identified, although the 

protein kinase Mζ (PKMζ) has been demonstrated to increase its presence following LTP induction, 

and also seems to be required for the expression of L-LTP (Hrabetova and Sacktor, 1996). The function 

of this kinase is to direct the trafficking and reorganisation of proteins in the PSD, and inhibiting PKMζ 

blocks the expression of already established L-LTP (Serrano, Yao and Sacktor, 2005). Similarly, 

several immediate early genes (IEGs), such as activity-regulated cytoskeletal-associated protein (Arc) 

and Homer 1A (H1A), and products of IEGs, such as zif268, have been identified as playing some role 

in the long-term expression of plasticity processes (Knapska and Kaczmarek, 2004; Vazdarjanova et 

al., 2006). It has been demonstrated that disrupting the expression of these proteins can impair LTP and 

memory consolidation (Guzowski et al., 2000). 

 

The input specificity of plasticity processes requires that de novo protein synthesis and gene expression 

processes are directed to the appropriate synapse, rather than distributed throughout the cell. It was 

originally suggested that protein synthesis and targeted mRNAs may be activated locally, at the 

particular synapse that is undergoing LTP (Steward and Levy, 1982; Steward and Fass, 1983; see 

Kelleher, Govindajaran and Tonegawa, 2004 for a review). However, it is now generally accepted that 

these processes occur more broadly across the dendrites and soma of the neuron, and so some 

mechanism must exist which can specifically direct newly synthesised mRNAs and proteins to recently 

active synapses, or enable them to capture these products (i.e. Steward et al., 1998; Moga et al., 2004). 

It has been theorised that this may be achieved by a process of synaptic tagging, and there is now a 

broad body of evidence to support this hypothesis (Frey and Morris, 1997, 1998). Some of the 

plasticity related proteins which are captured by tagged synapses (such as PKMζ) have been identified, 

and there is a growing body of evidence that PKA, and its consequent cAMP mediated signalling 



cascade, may be the kinase responsible for the tagging process (Sajikumar et al., 2005; Young et al., 

2006). This research has also made it clear that consequent LFS can interfere with this PKA/cAMP 

signalling mechanism, and thus impair the expression of L-LTP by disrupting the synaptic tag 

(Kauderer and Kandel, 2000; Young and Nguyen, 2005; Young et al., 2006).  

 

2.5 The Role of LTP in Learning and Memory 

The biological mechanisms outlined above endow LTP with several attractive properties that have led 

to it becoming the dominant neuronal model of learning and memory processes or “…a molecular 

metaphor for Hebbian plasticity” (Bear, 2003). Firstly, and most obviously, is the length of time which 

these changes in synaptic strength can endure for – several days in vitro, and as long as a year in vivo 

(Bliss and Collingridge, 1993; Abraham et al. 2002). Secondly, the process is pathway specific, in that 

only those particular synapses which have both pre-synaptic glutamate release and post-synaptic 

depolarisation are potentiated. This vastly increases the theoretical storage capacity of any neural 

network (Malenka and Nicoll, 1999). Thirdly, it is associative, in that LTP provoked by a strong 

stimulus on one synapse can facilitate induction at neighbouring synapses in response to weak 

stimulation (Harvey and Svoboda, 2007). This has often been viewed as a cellular analogue of classical 

conditioning (Malenka and Nicoll, 1999). The property of associativity may follow from the critical 

role of post-synaptic depolarisation, which can spread from afferent fibres in order to facilitate the 

unblocking of NMDA channels at less excited synapses (Bliss and Collingridge, 1993; Malenka, 2003). 

The process of synaptic tagging may also explain the co-operativity of LTP, as stimulation of an input 

which is too weak to provoke L-LTP may, nevertheless, produce a synaptic tag and thus capture the 

proteins that have been generated by stronger stimulation elsewhere on the dendritic tree (Abraham, 

2008). Finally, the fact that LTP can be most reliably generated in brain regions such as the 

hippocampus, which are known to be involved in learning and memory, has also been cited as evidence 

for its functional relevance (Malenka and Nicoll, 1999; Sanes and Lichtman, 1999; Malenka, 2003). 

 

These similarities between the properties of LTP and memory, as well as its ubiquitous nature in the 

brain, have led to the formulation of a synaptic plasticity and memory (or SPM) hypothesis. Generally 

speaking, this theory states that “…activity-dependent synaptic plasticity is induced at appropriate 

synapses during memory formation, and is both necessary and sufficient for the information storage 

underlying the type of memory mediated by the brain area in which that plasticity is observed” (Martin, 

Grimwood and Morris, 2000). A large amount of evidence explicitly highlights the link between LTP 

and memory in mammals, but it is difficult to ascertain whether synaptic changes alone are sufficient to 

mediate the disparate forms of human memory. A variety of experimental methods have been applied 

to test the SPM theory. For example, studies of aging rats have demonstrated that deteriorating 

performance in spatial tasks is correlated with the reduced persistence of synaptic potentiation (Gage, 

Dunnett and Bjorkland, 1989; Fischer et al., 1992; Barnes et al., 1997). Researchers have also 

attempted to saturate synaptic strengths in vivo, in the hope that an inability to generate any further 

potentiation will correlate with an inability to learn. A positive result was originally obtained using this 

methodology (Castro et al., 1989) but further studies have been unable to reproduce these findings 



(Jeffery and Morris, 1993; Korol et al., 1993). More recent work has again demonstrated that the 

occlusion of plasticity in the hippocampus does impair spatial learning – but scepticism of both the 

method and result remains (Moser et al., 1998).  

 

Pharmacological agents have also been employed to block the molecular mechanisms of LTP, in order 

to assess the effects that this may have on learning and memory function. One of the first to research 

this link was Richard Morris at the University of Edinburgh, who set out to test the impact of NMDAr-

inhibitors on navigational ability. The eponymous water maze used in these experiments has come to 

be one of the best known tests of spatial learning and memory. It consists of a small platform, 

submerged in a pool of opaque liquid and set within an arena with various cues on the walls. Rats swim 

in the pool until they locate the platform by trial and error. Subsequently, they can navigate more 

directly to the platform using their memory of its location. Morris demonstrated that rats whose 

hippocampii were perfused with an NMDAr inhibitor showed severe deficiencies in their ability to 

complete this task, and in their induction of hippocampal LTP (Morris et al., 1986). Several subsequent 

studies have employed this method to establish a link between LTP and other forms of spatial learning, 

olfactory learning, and contextual fear conditioning (see Neves, Cooke and Bliss, 2008 for a review).  

 

Further studies have specifically aimed to block the expression of L-LTP, and demonstrated how the 

administration of a PKMζ inhibitor into the hippocampi of rats results in retrograde amnesia 

(Pastalkova et al., 2006). This not only provides support for the role of LTP in memory consolidation, 

but also for the role of this protein in maintaining L-LTP expression. The SPM theory suggests that 

drugs which enhance LTP might consequently enhance learning. Ampakines, which take their name 

from the AMPA receptor upon which they act, are a family of compounds which enhance and prolong 

glutamergic neurotransmission and have been demonstrated to facilitate the induction of hippocampal 

LTP (Staubli et al., 1994). There is a considerable body of evidence to suggest that these compounds 

can enhance performance on memory tasks which depend on different brain structures across diverse 

species and a range of timescales (Hampson et al., 1998a, b; Lynch, 2004).  

 

These results offer strong support for the SPM hypothesis, but there are problems associated with drug 

diffusion, sensorimotor side effects, and the fact that NMDAr antagonists may affect neuronal 

processes other than LTP. For example, the behaviour of animals that have received pharmacological 

infusions are often, although not always, qualitatively different than control groups –they can 

demonstrate loss of balance, apparent loss of sight, thigmotaxis (an adherence to the walls of an arena) 

and even schizophrenic behaviour (Cain, 1998). Clearly, learning cannot proceed (and therefore the 

experimental method is unsound) if the animal cannot see, move, or feel properly. Elsewhere, it has 

been demonstrated that the adverse effects of NMDAr inhibitors on spatial performance in the Morris 

water maze can be almost completely eliminated if an animal is trained on a different maze 

immediately beforehand, without the administration of any drug (Bannerman et al., 1995). This result 

suggests that a variety of processes interact in a complex manner during spatial learning and recall – 

and that the role of NMDA receptors and LTP in this behaviour may have been oversimplified. 



 

In more recent studies, transgenic mice have been used to examine behavioural differences which arise 

when the induction or expression mechanisms of LTP are disabled or manipulated (see Martin, 

Grimwood and Morris, 2000; Tsien, 2000 and Neves, Cooke and Bliss, 2008 for reviews). For 

example, a strain of mice has been engineered to have an increased concentration of NMDA receptors 

in their forebrain, which enhances the expression of LTP. These „Doogie‟ mice, named after the 

precocious TV doctor Doogie Howser, demonstrate superior ability in various learning and memory 

tasks (Tang et al. 1999). Similarly, mice that are genetically engineered to lack NMDAr in certain 

regions of their hippocampus demonstrate reduced learning and recall abilities (Tsien, Huerta and 

Tonegawa, 1996; Nakazawa et al., 2002, 2003). Other strains with a deleted isoform of CaMKII have 

been bred, and these creatures demonstrate impaired hippocampal LTP and specific deficits in spatial 

learning tasks (Silva et al., 1992a, b). Experimenters have also made targeted mutations to the alpha-

CaMKII protein, which removes the ability of this kinase to auto-phosphorylate, and thus to perpetuate 

LTP expression in the absence of elevated Calcium concentration. Mice which carry this mutation are 

unable to express LTP in the hippocampus under standard stimulation protocols, and demonstrate 

severe deficiencies in spatial learning and memory (Giese et al., 1998; Cooke et al., 2004). These 

results also support the hypothesis that CaMKII autonomously sustains LTP expression after the 

Calcium concentration subsides to a basal level (Cooke and Bliss, 2006).  

 

One of the most compelling genetic knock out studies generated an inducible and reversible mutation 

of NR1 receptors, which are functional subunits of NMDAr, in a specific region of the hippocampus. 

This allowed the development of the mice to proceed as normal until such a time as the experimenter 

chose to make a targeted suppression of LTP in this brain region, which had the effect of preventing the 

consolidation of new episodic memories (Shimizu et al., 2000). Other genetic manipulations have been 

explicitly targeted at preventing L-LTP, and thus the consolidation of synaptic potentiation, 

demonstrating a consequent impairment in forming long-term memories (Abel et al., 1997; Wong et 

al., 1999). Again, it should be noted that transgenic mice may be impaired in many other abilities 

which could contribute to their failure to display normal learning behaviour. For example, it has been 

reported that mice generated to express a vastly reduced proportion of the NR1 subunit can exhibit 

several behavioural abnormalities which bear a striking resemblance to schizophrenia (Mohn et al., 

1999).  

 

Despite the body of evidence that delineates a specific link between NMDAr-dependent LTP and 

learning behaviour, the SPM theory is not considered to be conclusive. In particular, few studies have 

managed to address the assertion that LTP is sufficient for memory storage because of the obvious 

difficulties with experimental design. Some examples of mutant mice with deficient learning and 

memory, but normal LTP expression (or vice versa) have also been presented, although the 

methodology of these studies means that the findings may be questioned (Migaud et al., 1998; 

Zamanillo et al., 1999; Fragkouli et al., 2005; see Tsien, 2000 for a review of other earlier studies). 

These results suggest that mnemonic processes are likely to be far more complex than simple LTP, and 



may involve many more cellular and systems level processes. It may be that synaptic plasticity 

represents the preferable mechanism, when available, but not the only one that the mammalian brain 

can employ in order to encode and retrieve memory traces (Neves, Cooke and Bliss, 2008). 

 

2.6 Computational Modelling and the Need for Competition 

Alongside the neurobiological investigation of LTP, computational neuroscientists have aimed to 

explore the emergent properties of Hebbian learning rules in studies of artificial neural networks 

(ANNs). This modelling, consistently inspired by biological data, has helped to shed light on the 

emergent functions and possible weaknesses of LTP and Hebb‟s postulate. These processes are synapse 

specific, and thus provide great scope and depth for memory storage. However, this property also 

makes it intrinsically difficult to co-ordinate and stabilise neural and synaptic dynamics across an entire 

network. Thus, it is clear that „pure‟ Hebbian learning is insufficient to fully describe the plasticity 

processes which must occur in vivo – or to allow the stable operation of ANNs (Song, Miller and 

Abbott, 2000; van Rossum, Bi and Turrigiano, 2000; Roberts and Bell, 2002). In order to account for 

the processes of activity-dependent development and forgetting, and to maximize the capacity for 

information storage, a successful plasticity rule must stimulate competition between inputs to a neuron 

and generate a stable distribution of synaptic weights (Sejnowski, 1977; Bienenstock, Cooper and 

Munro 1982). Pure Hebbian learning cannot achieve this, not least because it fails to make any mention 

of synaptic weakening processes, but also because those inputs which correlate with post-synaptic 

firing are repeatedly strengthened and thus grow to infinitely high values. This tends to destabilise 

post-synaptic firing rates – driving them either towards zero or infinitely high, as synaptic weights 

similarly evolve towards zero or the maximum possible value (Miller and MacKay, 1994). In order for 

learning to proceed in a homeostatic manner, a successful plasticity model must allow Hebbian changes 

in the efficacy of synapses while also describing conditions under which synapses will be weakened, or 

provide a general rule for the decay of all synaptic strengths so that only those that are persistently 

reinforced will remain potentiated.  

 

2.7 Long-term Depression 

In light of the need for bi-directional plasticity in neural networks, it is reassuring that long-term 

depression (LTD), like LTP, appears to be a common feature of synapses throughout the brain 

(Malenka and Bear, 2004). LTD is an enduring, activity-dependent decrease in synaptic efficacy that 

was first discovered in the hippocampus in vitro by Lynch, Dunwiddie and Gribkoff (1977). Since that 

time, a number of different forms of homo-synaptic (i.e. specific to single junctions) and hetero-

synaptic LTD (i.e. affecting all the afferent or efferent synapses of a single neuron) have been 

identified throughout the cortex (for reviews, see Malinow and Malenka, 2002; Crozier et al., 2004; 

Malenka and Bear, 2004).  

 

Research has focussed on two main forms of homosynaptic LTD which are suspected to mediate 

distinct functions for memory processing and activity-dependent development (Delgado and O‟Dell, 

2005). The first form has many features in common with the standard model of LTP - it is NMDAr 



dependent, triggered by a post-synaptic influx of Ca
2+

, reversible, and sensitive to a process of „de-

depression‟ for a short period immediately following its induction. Although it is not yet entirely clear, 

the precise spatio-temporal dynamics of post-synaptic Ca
2+

 concentration seem to determine which 

signalling pathways are activated, and consequently whether a synapse is strengthened or weakened. 

Experimental evidence suggests that LTD is induced by a modest but enduring elevation in the 

intracellular concentration of Ca
2+

 (~0-7μM for ~60s), while LTP is evoked by a large but brief 

elevation (~10 μM for ~3s) (Lisman, 1989; Yang, Tang and Zucker, 1999; Bi, 2002). The direction and 

degree of NMDAr-dependent synaptic plasticity, then, depends directly on the level of post-synaptic 

depolarisation and the spatiotemporal profile of Ca
2+

 concentration, two variables which are intimately 

linked by the function of the NMDA receptor. 

 

NMDAr-dependent LTD is expressed via a serine-threonine phosphotase cascade which activates 

molecules such as calcineurin and protein phosphotase-1 (Dudek and Bear, 1992; Kirkwood and Bear, 

1994; Malenka and Siegelbaum, 2001; Shouval, Bear and Cooper, 2002; Malenka and Bear, 2004; 

Graupner and Brunel, 2007). In effect, while LTP mediates the phosphorylation of target protein 

kinases (such as CaMKII) in order to increase synaptic efficacy, LTD proceeds by de-phosphorylating 

similar protein kinases (PKA and PKC, for example, but not CaMKII) in order to decrease synaptic 

efficacy. This has similar, but contrasting, effects to the expression mechanisms of LTP – de-

phosphorylation of the Ser
845

 substrate of PKA, for example, decreases the open channel probability of 

AMPA receptors, and transgenic mice who lack Ser
845

 cannot express hippocampal LTD (Banke et al., 

2000; Lee et al., 2003). LTD also affects the trafficking of AMPA receptors and requires protein 

synthesis (but not gene transcription) in order to be consolidated. Hence, it seems likely that the 

signalling cascades mediated by LTP and LTD converge on the same target processes and molecules, 

and that the overall change in the strength of a synapse is determined by the relative activation of these 

kinase and phosphatase cascades (see Malenka and Bear, 2004 for a review). Similarly, late phase LTD 

has also been shown to rely on a process of synaptic tagging, and the delivery of plasticity related 

proteins to depressed and potentiated synapses on the same dendritic tree has been demonstrated to 

incur a variety of modulatory and non-linear integration effects (Sajikumar and Frey, 2004).  

 

A second common form of LTD also exists, which is dependent on metabotropic glutamate receptors 

(mGluR). It is known that mGluR activation can release internal stores of Calcium in the dendrite – 

providing a slow and sustained rise in Ca
2+

 concentration which may then trigger the same signalling 

cascades as NMDAr-dependent LTD. However, despite the study of mGluR dependent LTD being in 

an early stage, there is significant evidence to suggest that it has a significant pre-synaptic expression 

component, as well as affecting post-synaptic AMPAr trafficking (Malenka and Bear, 2004; Delgado 

and O‟Dell, 2005). Similarly, while it has been demonstrated that NMDAr dependent LTD can 

effectively erase recently induced (i.e. within ~30 mins) LTP, mGluR-dependent LTD can exist 

concomitantly with LTP, and merely suppresses its effects (Solger et al., 2004; Delgado and O‟Dell, 

2005). This allows the effective de-potentiation of synapses after a much greater time difference, and 



these two forms of LTD have consequently been hypothesised to mediate separate functions for 

mnemonic processing.  

 

2.8 Mechanisms of Homeostasis 

Ideally, neural circuits should remain both “highly adaptive and sturdily robust” (Abbott, 2003) so that 

they can change significantly during learning or development whilst retaining their stability and 

flexibility. Computational neuroscientists have therefore turned their efforts to examining how the 

processes of LTP and LTD might be homeostatically regulated – an important consideration in light of 

the positive feedback nature of Hebbian learning rules. Several mechanisms have been proposed which 

control global activity levels in one of three manners: by adjusting the ability of synapses to undergo 

further plasticity, by placing limits on the resources available to synaptic inputs, or by adjusting the 

intrinsic excitability of a neuron. Each of these mechanisms can introduce competition between 

synapses, and this is essential for memory function and the development of neural circuits to proceed 

efficiently. The first of these processes is broadly referred to as metaplasticity – or the plasticity of 

synaptic plasticity – as it hetero-synaptically adjusts the propensity for future depression and 

potentiation of neural connections based on previous activity (Abraham and Tate, 1997; Abraham and 

Bear, 2004; see Abraham, 2008 for a review).  

 

2.9 Mechanisms of Regulation: The BCM Formulation of Metaplasticity 

The most well known theoretical model of metaplasticity is the BCM model, which achieves stability 

through the use of a modification threshold (θm in Figure 2.3), a crossover point between depression 

and potentiation which is slowly modulated by pre- or post- synaptic activity (Bienenstock, Cooper and 

Munro, 1982). This process makes the strengthening of a synapse more likely when average activity is 

low, and vice versa, thus generating competition between inputs and regulating firing rates. The BCM 

formulation was originally based on experimental data from the developing visual cortex, and 

computational modelling has demonstrated that it can replicate many known features of that brain 

region, such as orientation selectivity and ocular dominance (Shouval, Intrator and Cooper, 1997; 

Blais, Cooper and Shouval, 2000; Cooper et al., 2004). A number of studies have extracted BCM-type 

curves from neurobiological data taken from the visual cortex, illustrating the dependence of synaptic 

plasticity on post-synaptic firing rate (Dudek and Bear, 1992; Wang and Wagner, 1999; Tang et al., 

1999; Quinlan, Olstein and Bear, 1999; Mellentin, Moller and Jahnsen, 2006).  

The shape of the BCM curve is widely believed to represent the shift in the direction and degree of 

plasticity dictated by increasing intracellular Calcium concentration. There is also a significant amount 

of evidence from the sensory cortices for a shift in the BCM threshold following chronic levels of 

activity (Crair and Malenka, 1995; Kirkwood et al., 1995; Kirkwood, Rioult and Bear, 1996; Rioult-

Pedotti et al., 2000; Quinlan et al., 2004; see Desai, 2003 for a review). Interestingly, there is little 

consensus among empirical or computational neuroscientists as to whether the BCM curve (illustrated 

in Figure 2.3) and corresponding theoretical modification threshold (θm) depend primarily on pre- or 

post- synaptic activity. Elevated pre- or post- synaptic firing rates can each induce LTP experimentally, 

but the coincident release of glutamate and unblocking of NMDA channels by depolarisation most 



reliably produce the strengthening of a synaptic connection (see Section 2.3). It might be suggested, 

therefore, that the BCM curve and theoretical modification threshold represent a dependence on the 

level of both pre- and post- synaptic activity.  

 

 
 

Figure 2.3: A typical BCM curve. The position of the sliding theoretical modification threshold (θm) is modulated 

by the recent history of pre- or post- synaptic activity. High firing rates produce an increase in the value of θm, 

such that potentiation becomes more difficult to induce, while low firing rates produce a decrease in the value of 

θm, such that depression becomes more difficult to induce. This has the effect of regulating neural activity and 

introducing synaptic competition into the Hebbian framework  

 

Further studies have suggested that a BCM-type sliding modification threshold may also exist in the 

hippocampus. Several experiments have demonstrated that the induction of LTP by a strong tetanus is 

inhibited if a weak („priming‟) tetanus is previously delivered to the same pathway (Huang et al., 1992; 

O‟Dell and Kandel, 1994; Abraham and Tate, 1997; Wang and Wagner, 1999; Abraham et al., 2001; 

Solger et al., 2004; Mellentin, Moller and Jahnsen, 2005; Zhang et al., 2005; see Abraham, 2008 for a 

review). The delivery of a strong priming stimulus also facilitates depotentiation and the induction of 

LTD at neighbouring synapses for a period of around two hours (Holland and Wagner, 1998; Wang 

and Wagner, 1999). This priming effect has been demonstrated to be NMDA-receptor dependent, 

although it can be expressed without pre-synaptic stimulation if post-synaptic firing occurs, and does 

not require the induction of plasticity (Huang et al., 1992; Zhang et al., 2005; Abraham, 2008). The 

activation of NMDA receptors provokes a shift in the modification threshold which lasts around one 

hour, and further potentiation is not blocked, but merely requires a more significant level of 

stimulation, while the induction of depression is facilitated (Huang et al., 1992; Fujii et al., 1996; 

Youssef, Addae and Stone, 2006).  

 

The exact mechanisms of this NMDAr dependent metaplasticity are not clear, but seem to involve 

similar signalling pathways to the expression of LTD (i.e. protein phosphotases and calcineurin), and 

may also entail the depression of NMDA receptor mediated currents (Fujii et al., 1996; Woo and 

Nguyen, 2002; see Abraham, 2008 for a review). The result of these changes is that a greater level of 

post-synaptic depolarisation is required to induce LTP, and a lower level is required to induce LTD 

(Ngezahayo, Schachner and Artola, 2000). Conversely, the activation of group 1 metabotropic 

glutamate receptors (mGlur1) has been demonstrated to facilitate the induction and persistence of LTP. 

This effect seems to be generated by enhancing levels of post-synaptic depolarisation (Bortolotto et al., 



1994; Manahan-Vaughan and Reymann, 1996; Cohen et al., 1999). The mechanisms of LTP 

enhancement are not entirely clear, but may be produced by an increased level of AMPA and NMDA 

mediated currents provoked by an increased rate of receptor trafficking (Oh et al., 2006). The majority 

of these studies have confirmed that the metaplastic changes observed are hetero-synaptic, in that they 

affect LTP induction at all inputs to a single post-synaptic neuron – a key assumption of the BCM 

model (Abraham et al., 2001; Abraham, 2008). Interestingly, changes in the propensity of a synapse to 

undergo LTP or LTD can also be affected by the behavioural state of an animal (i.e. Xu et al., 1998).  

 

Several other possible mechanisms of metaplasticity have been proposed, but as yet there is insufficient 

evidence to conclusively support any of them. Some researchers have highlighted the propensity of the 

protein kinase CaMKII (or more specifically, one of its α- or β- holoenzymes) for bi-directional 

modulation via auto-phosphorylation. It is well documented that auto-phosphorylation (at the 

Threonine 286 site) allows the function of CaMKII to proceed in the absence of elevated Calcium, and 

thus outlast the induction signal for LTP. It has also been demonstrated that low level stimulation of 

CaMKII allows auto-phosphoryation at a different site, Threonine 305 / 306, which decreases the 

affinity of the kinase for the PSD, reducing its presence at the synaptic membrane and thus raising the 

threshold for LTP (Tompa and Friedrich, 1998; Elgersma et al., 2002; Krucker et al., 2002). Transgenic 

mice that do not express Thr
305 

/ Thr
306

 show no changes in the position of the modification threshold 

with priming, and also demonstrate a significantly higher value of θm (Mayford et al., 1995).  

 

Elsewhere in the hippocampus, chronic levels of activity have been shown to bi-directionally regulate 

the ratio of α- to β- forms of CaMKII. With activity blockade, for example, the relative concentration 

of βCaMKII increases. This form of the kinase is more sensitive to Ca
2+

, and thus allows a neural 

network to continue to function in a quieter state – a perfect example of homeostasis (see Thiagarajan, 

2007 for a review). However, this β- form of the kinase also acts to further diminish the relative 

concentration of αCaMKII, which is more specifically implicated in LTP expression cascades, and thus 

the ability of synapses to undergo potentiation is reduced. The implications of these observations have 

yet to be explored, and conflicting results (such as cases in which priming stimulation facilitates the 

induction of LTP) have been reported (Abraham and Tate, 1997; Abbott and Nelson, 2000).  

 

An alternative theory of the mechanisms which may underlie BCM metaplasticity implicates a process 

of NMDA receptor trafficking and modulation in adjusting the position of the modification threshold. 

Altered NMDA receptor concentration or function will directly affect intracellular Calcium dynamics 

without modulating the basal response of a synapse, and thus represents an attractive mechanism for 

implementing metaplasticity. NMDA receptors consist of a single NR1 subunit, and one of four NR2 

subunits (NR2A-D) which have different effects on the decay kinetics of Calcium signals, and 

therefore the direction and degree of plasticity (Hrabetova et al., 2000; Barria and Malinow, 2002). In 

the sensory cortices, it is known that the concentration of NMDA receptors is upregulated some time 

after the changes in AMPAr expression which are induced by LTP (Watt et al., 2004). In fact, the ratio 

of AMPA to NMDA receptors in these brain regions remains remarkably consistent, despite wide 



changes brought about by LTP and LTD. This might suggest that LTP would be more easily induced 

following a history of potentiation, further destabilising synapses and directly contradicting 

metaplasticity theory.  

 

However, it has also been demonstrated that visual experience and olfactory learning increases the 

concentration of NR2A-containing receptors at cortical synapses, and that visual deprivation has the 

opposite effect (Quinlan et al., 1999a; Quinlan et al., 1999b). As the NR2B subunit mediates longer and 

larger Calcium currents, the threshold of activation needed to induce LTP is effectively lowered by 

activity blockade, so that, despite the decreased concentration of NMDA receptors, the ease with which 

LTP can be induced actually increases. The observation that NR2A knock-out mice exhibit no change 

in the position of the modification threshold with visual deprivation or experience suggests that it is 

this subunit whose expression is modulated in order to control the value of θm (Philpot, Cho and Bear, 

2007). The mechanisms of regulation of these specific subunits are most likely controlled by G-coupled 

protein receptors, which can activate various kinases and phosphotases in order to affect the properties 

and trafficking of NMDAr (see MacDonald, Jackson and Beazely, 2007 for a review). 

 

A similar process has been identified in the hippocampus, with the ratio of NR2A to NR2B subunits of 

the NMDA receptor being bi-directionally manipulated by levels of activity (Vissel et al., 2001;  

Grosshans et al., 2002; Montogomery et al, 2005; Morishita, Marie and Malenka, 2005; Hellier et al., 

2007). It has been demonstrated that the NR2A subunit is essential for the expression of potentiation, 

while the NR2B subunit is critical for depression, as selective pharmacological inhibition of these 

receptors will eliminate one or the other of these processes (Gerkin et al., 2007). The authors suggest 

that Calcium influx via the NR2A and NR2B channels may preferentially activate CaMKII and 

Calcineurin respectively, in order to mediate these changes. However, some conflicting observations 

have also been made. For example, it has been demonstrated that NR2B over-expressing transgenic 

mice exhibit a shift to the left of the BCM curve (i.e. facilitated potentiation), attributed to the longer 

opening time of this receptor (Tang et al., 1999). Elsewhere, it has been observed that the NR2B 

subunit is phosphorylated during LTP, an effect that peaks several hours after induction. This enhances 

the opening time of the NMDA channel, and thus affects subsequent attempts to induce plasticity, with 

little effect on AMPA receptor mediated currents (and therefore on the synaptic response). Conversely, 

LFS produces a depression of NMDAr mediated synaptic currents, and a particular reduction in 

Calcium flux, by activating a phosphotase and PKA dependent pathway (Sobcyzk and Svoboda, 2007). 

This raises the threshold for LTP – which is analogous to a priming effect, but has the effect of making 

potentiation more difficult for depressed synapses, contrary to classical interpretations of 

metaplasticity. There is also evidence for NMDAr insertion in the synaptic membrane following LTP, 

which may make further potentiation more likely (Williams et al., 2007). It has been suggested that 

these changes might serve to stabilise the state of synapses following potentiation or depression events, 

so that stored memories are not destroyed by ongoing activity (Hellier et al., 2007). Clearly, this 

contradicts the theory of NMDAr trafficking in the hippocampus as a homeostatic mechanism. 

Although the data is not conclusive, and often contradictory, the concept of metaplasticity through 



NMDAr trafficking is attractive, and analogous to the role of AMPAr trafficking in expressing long-

term plasticity.  

 

Elsewhere, examinations of the entorhinal cortex have demonstrated that the activation of NMDA 

receptors favours LTP, as antagonists of this receptor shift the modification threshold to the left, while 

the activation of voltage-dependent Calcium channels (VDCCs) favours LTD, as antagonists of these 

channels shift the modification threshold to the right (Solger et al., 2004). In the hippocampus, mGluRs 

have been demonstrated to modulate NMDAr mediated synaptic currents, thus affecting the induction 

of long-term plasticity, and to modulate the process of AMPAr trafficking, which represents the main 

expression of long-term plasticity. Furthermore, the trafficking of mGluRs has been observed, which 

can directly affect the process of mGluR-dependent plasticity, and therefore directly the magnitude and 

direction of NMDAr-dependent LTP and LTD (Cheyne and Montgomery, 2008). Elsewhere, a growing 

field of research has highlighted the importance of inhibitory interneurons, their plasticity, and the 

consequent effects on depolarisation and the propensity for synaptic change at excitatory neurons 

(Freund and Buszaki, 1996; Kullman and Lamsa, 2007). Finally, theoretical examinations have 

suggested that the intrinsic plasticity of neurons, which affects their excitability, and thus the level of 

firing they produce in response to current injection, can interact with standard plasticity 

implementations to produce a BCM like curve (Triesch, 2007). These changes are most likely mediated 

by the modulation of several voltage dependent ion channels (Zhang and Linden, 2003).  

 

The mechanisms may not be clear, but whatever the case, it seems that chronic and acute changes in 

activity levels can significantly affect the conditions required for the induction of LTP and LTD. It 

should be noted that the expression of robust plasticity does not vary; rather, it is the level of post-

synaptic depolarisation or Calcium influx needed to induce synaptic changes that is affected by a short-

term history of activity. These metaplastic changes (towards favouring depression) may also be able to 

explain the deficits in learning and memory that are exhibited as a result of the aging process, diabetes 

mellitus and behavioural stress (see Artola, 2008 for a review). The BCM model currently represents 

the best theoretical approach to modelling these changes, and while the majority of experimental 

support for this theory has been obtained from the visual cortex, there is now substantial evidence for a 

BCM-type curve and shifting threshold for plasticity in the hippocampus and other cortical regions.   

 

2.10 Mechanisms of Regulation: Synaptic Scaling 

An alternative method of regulating activity across a neural network is to make direct, global changes 

to synaptic weights, rather than indirectly modulating the capacity for synaptic plasticity. Synaptic 

scaling is a rapid, hetero-synaptic process that can balance the homo-synaptic changes caused by LTP 

and LTD. It involves the adjustment of all input strengths to a given post-synaptic neuron based on its 

level of activity – thus introducing competition into the Hebbian framework (Miller and MacKay, 

1994; Abbott and Nelson, 2000; Turrigiano and Nelson, 2004). It has been demonstrated that this 

modification can allow neurons to operate as principal component analysers, whereby they extract the 

statistically most significant factor from their input (Oja, 1982; Abbott and Nelson 2000). There is 



experimental evidence for synaptic scaling acting to dynamically maintain firing rates within a certain 

range in the visual cortex, hippocampus and spinal cord (Turrigiano et al., 1998; Lissin et al., 1998; 

Burrone, O‟Byrne and Murthy, 2002; Desai et al., 2002). Adjustments to synaptic strengths can be 

either multiplicative, whereby each synaptic strength is adjusted by the same factor, or subtractive, 

whereby each synaptic strength is adjusted by the same absolute value (Miller and MacKay, 1994). 

Computational studies demonstrate that either of these approaches will stabilise Hebbian plasticity, but 

direct synaptic development in markedly different ways. Multiplicative scaling retains the relative 

weight differences that evolve (via Hebbian plasticity) to reflect input correlations, generating a graded 

synaptic weight distribution. Subtractive scaling, on the other hand, generates much more competition 

between synapses, and thus a bimodal weight distribution develops, whereby those inputs with the 

greatest correlation are maximally potentiated, at the expense of any others (Miller and MacKay, 

1994). 

 

In principle, these changes in total synaptic strength could be mediated by changes in postsynaptic 

receptor clustering (in a manner analogous to AMPAr trafficking), pre-synaptic release or re-uptake of 

neurotransmitter, or the number or size of functional synapses. There is empirical evidence for each of 

these mechanisms playing some role in synaptic scaling processes. In the visual cortex, AMPAr 

trafficking is altered and changes in inhibitory GABAergic synapses proceed in order to compensate 

for global changes in activity levels (see Desai, 2003 for a review). These changes are global, 

multiplicative and based on a slow integration of activity levels. As we have seen, the ratio of AMPA 

to NMDA receptors is roughly constant in the neocortex, and so a change in the modification threshold 

for LTP and LTD is also likely to occur (Abbot and Nelson, 2000; Watt et al., 2000; Turrigiano and 

Nelson, 2004). Changes in the size of synapses, the probability of transmitter release and the quantal 

amplitude which take a period of hours, or even days, to develop, have also been reported (see 

Turrigiano, 1999; Abbott and Nelson, 2000; Desai, 2003; Zhang and Linden, 2003 for reviews).  

 

In the hippocampus, there is evidence that a reduction in neural activity increases the number of pre-

synaptic vesicle stores, while increased activity decreases the rate of AMPAr trafficking (see 

Turrigiano and Nelson, 2004 for a review). Several other studies have implicated changes in the rate of 

receptor insertion and removal at the post-synaptic membrane as a mechanism by which synaptic 

scaling may be implemented (Turrigiano et al., 1998; Lissin et al., 1998; Desai, 2003). These changes 

have been demonstrated to be cell autonomous, as blocking activity in a single neuron results in a 

scaling up of pre-synaptic transmitter release to that neuron over a period of several days (Burrone, 

O‟Byrne and Murthy, 2002). Recent experimental data has suggested that changes in AMPAr 

trafficking – which must interact with the processes of LTP and LTD, as they are mediated in part by 

the same mechanisms – are directed by a single molecule, the pro-inflammatory cytokine tumour-

necrosis factor-α (TNF-α). The presence of TNF-α directly increases the surface expression of AMPA 

receptors in hippocampal cultures and slices, but does not appear to have any involvement in the 

processes of LTP or LTD. The presence of a TNF-α scavenger molecule also prevents the changes in 

AMPAr trafficking which normally result from chronic activity blockade. It has been hypothesised that 



this molecule is produced by the glia (which is ideally situated to monitor activity levels, via glutamate 

spillover for example), accumulates extra-cellularly and affects both an increase in AMPAr expression 

and a decrease in inhibitory synaptic strengths (Stellwagen and Malenka, 2006). Brain-derived 

neurotrophic factor (or BDNF) is widely believed to mediate the opposing process of scaling down 

strengths during periods of consistently elevated activity (Rutherford, Nelson and Turrigiano, 1998). 

As with the BCM model, several other biological correlates have been suggested, including a process 

of synaptic scaling by altering the intrinsic excitability of neurons. There is some evidence from the 

neocortex and cerebellum which supports such a theory, as the firing rate produced in response to a set 

level of current input is dynamically altered in order to maintain stability (Desai, Rutherford and 

Turrigiano, 1999; Brickley et al., 2001).  

 

2.11 Mechanisms of Regulation: Synaptic Redistribution 

The theory of synaptic redistribution stems from observations of short-term depression at a number of 

cortical synapses, thought to arise from the depletion of neurotransmitter vesicles which are ready to 

release (Markram and Tsodyks, 1996; Abbott et al., 1997; Tsodyks and Markram, 1997; Abbott and 

Nelson, 2000). This causes a decrease in the likelihood of release with each transmission event, 

followed by an exponential recovery to the baseline release probability. If there is a pre-synaptic 

element to LTP expression, then potentiated synapses may have a larger number of pre-synaptic 

transmitter vesicles, and / or an increased probability of transmitter release. The process of synaptic 

redistribution reflects the equilibrium which arises between enhanced amplitude of synaptic 

transmission and the subsequently enhanced magnitude and duration of short-term depression at the 

pre-synaptic terminal (O‟Donovan and Rinzel, 1997). Effectively, although individual synaptic currents 

are larger, the time taken to recover is longer, and therefore excessive levels of synaptic transmission 

are avoided. This process prevents runaway increases in post-synaptic firing rates, even in recurrently 

connected networks. There is some experimental evidence for a process of synaptic redistribution at 

neocortical synapses, but not those in the hippocampus (Buonomano, 1999; Finnerty, Roberts and 

Connors, 1999; Selig, Nicoll and Malenka, 1999). 

 

2.12 Mechanisms of Regulation: Functional Inhibition 

Within the human brain there are a number of neural networks, such as parts of the hippocampal 

formation, which exhibit extensive recurrent connectivity. In these systems, it seems unlikely that 

processes such as synaptic scaling are sufficient to regulate activity, as excitation is rapidly recycled 

and can therefore escalate on a much shorter timescale than the regulatory processes described above 

(Turrigiano and Nelson, 2004). In these cases, a balance between feedback inhibition and excitation is 

critical to prevent runaway activity (Changnac-Amitai and Connors, 1989). This functional inhibition 

can also have an effect on plasticity processes, by consistently hyperpolarising a neuron and thus 

preventing firing and the unblocking of NMDA receptors, for example (Hensch et al., 1998; see 

Paulsen and Moser, 1998 for a review of other findings). Additional mechanisms that dynamically 

adjust the levels of excitatory and inhibitory feedback have also been identified (Marty et al., 1996; 

Rutherford, Nelson and Turrigiano, 1998; Kilman, van Rossum and Turrigiano, 2002). For example, it 



has been demonstrated that the blockade of activity in cultured hippocampal networks produces a 

reversible decrease in functional inhibition, mediated both by receptor trafficking and changes in the 

number of synapses (Rutherford et al., 1997; Kilman, van Rossum and Turrigiano, 2002). Hence, 

several systems can interact to maintain activity levels within a reasonable range in recurrent networks: 

low activity levels increase excitation and reduce inhibitory feedback, while high activity levels reduce 

excitation (except to inhibitory interneurons) and increase inhibitory feedback (see Turrigiano and 

Nelson, 2004 for a review). 

 

2.13 Spike-timing Dependent Plasticity 

In recent years, a novel Hebbian plasticity model has generated considerable interest, because of the 

manner in which it can inherently stabilise network activity by stimulating competition between 

synapses (Song, Miller and Abbott, 2000; Abbott, 2003). It is known as spike timing dependent 

plasticity (STDP) because it dictates that the direction and degree of changes in synaptic efficacy are 

determined by the temporal order of neural firing. STDP is directly inspired by neurobiology (Markram 

et al., 1997; Magee and Johnston, 1997; Bi and Poo, 1998; Debanne, Gahwiler and Thompson, 1998; 

Feldman, 2000; see Roberts and Bell, 2002 and Dan and Poo, 2004 for reviews). As with previous 

models of long-term plasticity, further investigation has revealed a myriad of different forms of STDP 

throughout the cortex. However, in its most common incarnation, only those pre-synaptic spikes which 

provoke post-synaptic firing within a short temporal window (~20ms) potentiate a synapse, while those 

which arrive after post-synaptic firing cause depression. STDP implicitly generates competition 

between synapses, favouring reliable inputs with shorter latencies or strong mutual correlations at the 

expense of others (Kistler and van Hemmen, 2000; Song, Miller and Abbott, 2000; Kepecs et al., 2002; 

Roberts and Bell, 2002). If a hard limit is placed on the achievable strength of a synapse, then this can 

automatically lead to a normalization of the total input to a postsynaptic neuron in a competitive self-

organized process, removing the need for any synaptic scaling mechanism and generating intrinsically 

stable network operation (Kempter, Gerstner and van Hemmen, 2001; Abbott, 2003; Sakai, Nakano 

and Yoshizawa, 2004). Under certain conditions, STDP can also act to adjust synaptic weights in 

response to changes in input rate, allowing an unsupervised, homeostatic regulation of output firing 

rates. These properties have kindled great interest in this plasticity model. 

 

2.14 From Rate Coding to Spike Timing 

The discovery of STDP and its use in ANNs marks an important paradigm shift in computational 

neuroscience. Previous models of learning have consistently used correlations between firing rates in 

order to direct synaptic plasticity – reflecting the tetanic stimulation protocols commonly used to 

induce LTP and LTD in the lab (Kempter, Gerstner and van Hemmen, 1999). These rate-coded 

learning rules have now given way to plasticity formulations which make an explicit consideration of 

spike-timing in determining the direction and degree of weight change. STDP rules are still consistent 

with Hebb‟s postulate, as the asymmetrical time window (see Figure 2.4) stresses the importance of 

causality as opposed to coincidence in neuronal firing (Abbott and Nelson 2000; Kepecs et al., 2002). 

A number of computational studies have demonstrated how STDP can selectively potentiate temporal 



correlations embedded within a background of uncorrelated firing activity (i.e. van Rossum, Bi and 

Turrigiano, 2000; Song, Miller and Abbott, 2000). Furthermore, spiking models are considered to be 

third-generation neural networks, superseding earlier rate based systems in their computational power 

and abilities (Hopfield, 1995; Maass 1997; Maass and Markram, 2004). The amount of information 

which can be stored by precise and reliable spike times in a single neuron is much greater than that 

contained in a mean firing rate, and is available immediately, rather than after the delay needed for an 

averaging period (van Rullen and Thorpe, 2002). There are also an increasingly large number of studies 

which demonstrate that spike timing patterns of sub-millisecond precision can be reliably generated in 

vivo (for a review, see Izhikevich, 2006). 

 

2.15 The Mechanisms of STDP 

Although STDP has become popular in computational modelling studies, its biological mechanisms 

have not received such significant research attention. It is generally assumed that they adhere to the 

NMDAr-dependent model of LTP and LTD, but emphasise the importance of the temporal sequence of 

synaptic events in determining the level of post-synaptic intracellular Calcium concentration, and thus 

the direction and magnitude of synaptic change. In essence, when pre-synaptic spiking occurs first, 

glutamate will be present when NMDA receptors are unblocked by post-synaptic depolarisation, thus 

allowing a large and rapid influx of Ca
2+

. This depolarisation is widely believed to be mediated by 

backpropagating action potentials (bAPs) returning from the axon to the dendrites (Magee and 

Johnston, 1997). The fact that simultaneous pre- and post- synaptic spiking generally causes maximal 

depression is often taken as evidence for the importance of the bAP. Conversely, when post-synaptic 

activity comes first, the rise in intracellular post-synaptic Calcium concentration is slow but sustained, 

via voltage-dependent calcium channels (VDCCs) and possibly partial NMDAr activation (Koester and 

Sakmann, 1998; Malenka and Siegelbaum, 2001; Dan and Poo, 2004; Dan and Poo, 2006). The 

direction and degree of plasticity is thus dictated by the relative timing of the bAP and the incoming 

pre-synaptic spike. This again raises the possibility that feed-forward and feed-back inhibition may 

play a critical role in plasticity processes, as GABAergic interneurons which target post-synaptic 

dendrites can control both the strength and extent of the bAP (see Paulsen and Moser, 1998 for a 

review).  

 

It has been demonstrated that the LTP component of STDP is NMDAr-dependent, but the timescale 

(~20ms) is generally much shorter than that of glutamate dissociation from NMDA receptors. Hence, 

the temporal profile of the potentiation window is most likely explained by the kinetics of Mg
2+

 in 

unblocking NMDA receptors, as well as other post-synaptic cytoplasmic processes (Lin et al., 2003; 

Kampa et al., 2004; Dan and Poo, 2006; Kampa, Letzkus and Stuart, 2007). However, some research 

has suggested that the bAP is not necessary or sufficient to allow potentiation, as it is too brief to 

unblock NMDA channels (Golding, Staff and Spruston, 2002; Lisman and Spruston, 2005). The 

presence of sufficient post-synaptic depolarisation may instead be caused by the co-operative activity 

of several inputs, sufficiently high firing rates from a single input (such as the tetanic stimulation 

protocols traditionally used to induce LTP), or the presence of dendritic spikes (those which are 



generated in the dendrite and propagate to the axon, but may or may not generate an axonal action 

potential on arrival). It is also possible that, due to electric attenuation, EPSPs which may appear 

modest in size at the axon are actually much larger in the dendrites – and therefore sufficient to allow 

maximal Ca
2+

 influx through NMDA receptors (Golding, Staff and Spruston, 2002; Lisman and 

Spruston, 2005). The recent finding that STDP is also dependent on the exact location of a synapse on 

the dendritic tree further complicates theoretical modelling (see Froemke, Poo and Dan, 2005; Dan and 

Poo, 2006 or Kampa, Letzkus and Stuart, 2007 for reviews). However, computational models which 

incorporate NMDA channel characteristics and post-synaptic depolarisation profiles can replicate this 

dependence of plasticity on dendritic location, as well as predict changes in the shape of the STDP 

curve that are dictated by the profile of post-synaptic depolarisation (Saudargiene, Porr and Worgotter, 

2005). 

 

 
 

Figure 2.4: The asymmetric learning window of STDP. The absolute change in weight of a synapse (Δw) is a 

function of the latency between pre- and post- synaptic firing (s) and the parameters which define the shape of the 

asymmetric learning window (A± and τ±). The ratio of integrals of the depression and potentiation windows is 

defined as α, and thus α>1 indicates an overall dominance of depression and α<1 indicates an overall dominance of 

potentiation 

 

The simplest explanation offered for the profile of the depression window is that an after-

depolarization caused by post-synaptic spiking partially opens NMDA receptors, allowing a prolonged 

and low-level influx of Ca
2+

. However, this model also predicts a second LTD window, caused by pre- 

and then post-synaptic spiking at intervals longer than those which cause LTP, as the post-synaptic 

concentration of Ca
2+

 would have to pass through the range in which LTD is induced before returning 

to baseline levels. This effect has been observed in hippocampal slices, but these findings have not 

been replicated (Nishiyama et al., 2000). Other possible mechanisms for the LTD window have been 

offered, based on evidence that depression can be dependent on metabotropic glutamate receptors 

(mGluRs) or post-synaptically released retrograde messengers (such as endocannabinoids). The 

activation of VDCCs and the release of Ca
2+

 from internal post-synaptic stores have also been shown to 

be necessary for LTD, and this further complicated the dynamics of post-synaptic Ca
2+ 

concentration, 

and thus the determinants of the temporal window for LTD (Bi and Poo, 1998; Nishiyama et al., 2000; 

Dan and Poo, 2006; Kampa, Letzkus and Stuart, 2007). 

 



2.16 STDP in Models of Memory and Learning 

Models of STDP have proved extremely effective in modelling simple learning and memory processes. 

Particular successes have been made in areas where biophysical evidence for STDP is rife, such as the 

visual cortex. The critical emphasis placed on the temporal order of spiking by STDP is ideally suited 

for predictive sequence learning - a key feature of memory processes (Abbott and Blum, 1996). Many 

models have therefore employed this plasticity rule to great effect in learning and recalling specific 

sequences of neural spiking (Nowotny, Rabinovich and Abarbanel, 2003; Lengyel et al., 2005; 

Yamaguchi et al., 2007). Elsewhere, feed-forward networks which implement STDP have been 

demonstrated to allow the unsupervised learning of selectivity to direction and intermediate-complexity 

visual features in natural images (Buchs and Senn, 2002; Wenisch, Noll and van Hemmen, 2005; 

Masquelier and Thorpe, 2007). Spike-timing plasticity rules have also been used to model various 

features of the auditory system, such as the development of temporal feature maps and sound 

localisation based on sub-millisecond coding (Leibold, Kempter and van Hemmen, 2002; Burkitt and 

van Hemmen, 2003). Elsewhere, STDP has been reconciled with earlier models of reinforcement (or 

temporal-difference, TD) learning, in order to allow the selective enhancement of synaptic weights 

based on millisecond scale mechanisms, despite the reward which dictates this change being mediated 

on a more realistic behavioural timescale (Florian, 2005; Izhikevich, 2007). STDP has also been 

demonstrated to allow flexible single-trial learning in embodied robots (Di Paolo, 2003). 

 

2.17 Key Properties of STDP: Size of Potentiation and Depression Windows 

Computational modelling studies have offered significant insight into the functional implications and 

emergent behaviour of STDP. These have often focussed on several key features that can have a 

profound effect on the neural and synaptic dynamics of ANNs that implement this plasticity rule. The 

first of these regards the relative size of the „learning‟ windows for potentiation and depression (see 

Figure 2.4). When the size of the window for depression is greater than that for potentiation (i.e. α>1) 

STDP prevents the development of excitatory feedback loops, as two interconnected neurons cannot 

both consistently spike at short time intervals behind the other. This is considered to be essential for the 

stability of neural networks with extensive connectivity, and the primary reason for the instability of 

traditional models of Hebbian learning (Song and Abbott, 2001). It has also been demonstrated that, 

under these constraints, synapses are driven into a state of balanced excitation, whereby the membrane 

potential of the post-synaptic neuron remains at a level near the threshold for spiking. This forces 

neurons into a noisy but temporally sensitive mode of operation, which closely resembles observations 

of firing activity made in vivo (Abbott and Nelson, 2000; Feldman, 2000; Dan and Poo, 2006).  

 

For example, one computational modelling study describes how STDP can regulate the variability of 

post-synaptic firing, as described by the co-efficient of variation, and consistently maintain this 

parameter within a biologically realistic range (Song, Miller and Abbott, 2000). In the majority of 

cases, the size of the time windows for LTP and LTD that have been observed empirically also have a 

value of α > 1 (Dan and Poo, 2006). In particular, the original characterisation of STDP in the 

hippocampus by Bi and Poo (1998) measured values of 17 ± 9 ms for the time constant of LTP, and 34 



± 13 ms for the time constant of LTD. It is more difficult to experimentally determine the maximum 

amount of potentiation and depression which can be induced by a single spike pair (i.e. A± in Figure 

2.4), but it is clear that these values are equally important in determining the value of the integral over 

the STDP window, and thus the emergent behaviour of the plasticity rule. 

 

One of the most attractive features of STDP is its ability, under certain conditions, to homeostatically 

regulate network activity. This property has been frequently replicated with a value of α>1 (and 

additive STDP, see Section 2.18), as this incurs an increase in depression when input firing rates are 

raised, thus reducing the consequent increase in post-synaptic activity (van Rossum, Bi and Turrigiano, 

2000; Abbott and Nelson 2000; Song, Miller and Abbott 2000; Kempter, Gerstner and van Hemmen, 

2001; Tegner and Kepecs, 2002; Abbott, 2003). It has also been reported that the post-synaptic firing 

rate can be controlled by modulating the value of α, within the constraint that it must retain a value 

greater than unity (Song and Abbott, 2001). This negative rate correlation is anti-Hebbian in a time-

averaged sense, but Hebbian correlations between input and output spikes are still preferentially 

potentiated. However, the problem remains that, while these stabilising properties are very attractive, 

they directly contradict earlier observations of LTP, according to which increased pre- and post- 

synaptic rates produce a greater degree of potentiation. This suggests that some non-linearity must be 

introduced, to allow the STDP rule to selectively reward temporal correlations at low frequencies, and 

rate coded input at higher frequencies (Shadlen and Newsome, 1998; Senn, 2002). 

 

Conversely, when α=1, previous research suggests that correlated inputs are not preferentially rewarded 

above uncorrelated spiking activity, and post-synaptic activity is more sensitive to input fluctuations, 

which detracts from some of the beneficial features of STDP (i.e. Song and Abbott, 2001). When α<1, 

the behaviour of the plasticity model changes again, and bi-directional associations, which are often 

seen in real cortices, can arise (Kepecs et al., 2002). However, intrinsic rate stabilisation properties are 

lost completely, and increased firing rates generate greater net potentiation, which is in line with 

traditional models of LTP but requires additional mechanisms to regulate activity levels (Kempter, 

Gerstner and van Hemmen, 2001; Song and Abbott, 2001). 

 

2.18 Key Properties of STDP: Weight Dependency 

The second feature of computational STDP implementations that has a profound effect on network 

dynamics relates to the empirical observation that the degree of plasticity which is provoked by a spike 

pair can depend on the initial strength of a synapse (Bi and Poo 1998, Debanne, Gahwiler and 

Thompson, 1999; Wang et al., 2005). Effectively, this means that the values of A+ and / or A- (see 

Figure 2.4) depend on the current weight of a synapse, rendering the empirical measurement of these 

values more difficult. Computational STDP implementations which ignore this supplementary feature 

and use an additive update rule (see equation 2) tend to generate bi-modal weight distributions, similar 

to those produced by pure Hebbian learning. Synaptic weights under this regime are inherently 

unstable, due to the positive feedback process which arises between potentiation and the decreased 

latency of post-synaptic firing. However, the inclusion of a hard limit on the maximum achievable 



strength can prevent a runaway increase in synaptic currents. Additive STDP is characterised by strong 

competition between inputs for the control of post-synaptic firing – and the symmetry breaking which 

this allows can be a useful feature for the development of neural circuits (i.e. Wenisch, Noll and van 

Hemmen, 2005). However, the strength of this competition – and the bi-modal weight distribution that 

it incurs – means that graded representations are impossible, and synapses are effectively reduced to a 

binary state. The stability of weights, once evolved, also means that it is difficult for synapses to re-

organise to reflect changes in input, or to erase incorrect associations. This implies that weight 

distributions which do not reflect input correlations may develop (Song, Miller and Abbot, 2000; 

Kempter, Gerstner and van Hemmen, 2001; Rubin, Lee and Sompolinsky, 2001; Tegner and Kepecs, 

2002). 
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Equation 2.2: Typical Additive (top) and Multiplicative (bottom) STDP rules. The change in synaptic weight (Δw) 

is determined by the time difference between pre- and post- synaptic firing (s), the maximum change in synaptic 

weight per spike pair (A±) and the time constant of decay of this value (τ±) – see Figure 2.4. For multiplicative 

STDP rules, the change in strength of a synapse is also scaled by the initial weight value. 

 

Multiplicative update rules, on the other hand, tend to produce stable, unimodal distributions of 

synaptic weights which closely resemble those observed in vitro (Bekkers, Richerson & Stevens, 1990; 

van Rossum, Bi and Turrigiano, 2000; Kistler and van Hemmen, 2000; Rubin, Lee and Sompolinsky, 

2001). Under this regime, synaptic dynamics are much less sensitive to perturbations in input or 

network parameters, and graded representations can be produced. However, little competition exists 

between synapses, and this effectively means that all synaptic strengths are directed to a similar 

equilibrium value which is determined by network parameters. Previous research suggests that the pre-

synaptic firing rate has no effect on the weight of synapses in this context, which is at odds with 

traditional models of LTP and Hebbian learning, whereby inputs which are firing at a higher than 

background rate are potentiated (Burkitt, Meffin and Grayden, 2004). Although they do not require the 

inclusion of hard limits on synaptic strength, as additive STDP implementations do, multiplicative 

STDP rules are apparently unable to generate the unsupervised homeostasis described by previous 

research for additive STDP models, presumably because of the absence of synaptic competition. 

Temporal input correlations can be selectively potentiated, but in the absence of competition there is no 

mechanism to ensure that these connections endure once the input stimulus is removed or to 

simultaneously depress uncorrelated activity. Furthermore, the rate normalisation properties outlined 

earlier (for α>1) have not been demonstrated with this form of the plasticity rule. Hence, multiplicative 

STDP implementations seem to face the same problem as earlier Hebbian learning rules, and require 

additional mechanisms (such as synaptic scaling) in order to introduce competition between synapses 

(van Rossum, Bi and Turrigiano, 2000; Gutig et al., 2003).  

 



The neurobiological data on STDP is very much open to interpretation, however, and a number of 

different methods of regulating the amount of potentiation and depression in proportion to synaptic 

strength have been examined (van Rossum, Bi and Turrigiano, 2000; Gutig et al., 2003; Morrison, 

Aertsen and Diesmann, 2007; Standage, Jalil and Trappenberg, 2007). Other models have attempted to 

interpolate between additive and multiplicative STDP implementations, in order to make use of the 

beneficial properties of each (Gutig et al., 2003; Meffin et al., 2006). It is also unclear if the 

competition seen in networks with additive STDP arises directly from the form of the plasticity rule or 

from the differences in the balance of excitation and inhibition that emerge from this implementation 

(Sakai, Nakano and Yoshizawa, 2004). For example, it has been demonstrated that, if the weight 

dependency of both depression and potentiation processes are set equal, then the bi-modal weight 

distribution and innate competition that characterise the additive STDP rule can be generated by a 

multiplicative STDP implementation (Kepecs et al., 2002; Sakai, Nakano and Yoshizawa, 2004). 

 

2.19 Key Properties of STDP: Reconciling Models of STDP and LTP 

The analysis of STDP has been primarily based on isolated pairs of pre- and post- synaptic action 

potentials, while observations of LTP are commonly mediated by the application of prolonged spike 

trains. Few studies have attempted to reconcile these separate stimulation protocols within a single 

theoretical framework, and hence it is unclear how STDP causes synaptic weights to develop with 

more complex input patterns that are characteristic of normal brain activity, and which involve many 

possible spike pairings. It is commonly assumed that STDP and classic models of LTP are mediated by 

the same biophysical processes, and essentially represent two induction protocols of the same cellular 

mechanisms. However, the homeostatic properties of STDP that have been demonstrated in previous 

simulations (for additive update and α>1) directly contradict results obtained by the tetanic stimulation 

protocols used to invoke LTP. Critically, observations of STDP are typically made from quiescence, 

when membrane depolarisation and intracellular Calcium concentration are at their resting values. 

Clearly, during normal brain activity, the short term history of neural firing will have a direct effect on 

these parameters, and thus on the manner in which individual spike pairs contribute to the overall 

modification of a synapse. Making adaptations to common models of STDP so that they can be 

reconciled with earlier models of LTP, and can accurately model synaptic plasticity processes 

provoked by complex activity, is therefore an active and important area of research.  

 

For example, one of the first studies to highlight the importance of spike timing in directing synaptic 

plasticity also demonstrated that spike-timing dependent changes are heavily influenced by overall 

firing rates. A threshold of around 5Hz and a saturation level of around 30-40Hz were identified for 

LTP in the neocortex (Markram et al., 1997). More recently, research has confirmed that the degree 

and direction of plasticity in the rat visual cortex depends conjointly on spike timing and firing rate, 

with a greater degree of potentiation provoked by individual spike pairs when delivered at a higher rate 

(Sjostrom, Turrigiano and Nelson, 2001). It has been theorised that this may result from the residual 

depolarisation which is produced by high frequency firing. This hypothesis is supported by the 

observation of a novel form of co-operativity in STDP at low frequencies. Single pairs of pre- and post- 



synaptic spikes are often ineffective at potentiating a synapse, while a modest degree of post-synaptic 

depolarisation preceding the pairing allowed robust LTP to be induced. Similarly, in the hippocampus, 

post-synaptic bursting (which also results in a residual depolarisation) has been demonstrated to allow 

more robust and pronounced LTP expression (Debanne, Gahwiler and Thompson, 1996; Kobayashi 

and Poo, 2004). However, it has not yet been determined whether depolarisation requirements alone 

can explain the difference in the magnitude of potentiation invoked by spike pairs at very low (~0.1Hz) 

and high (~50Hz) frequencies in the visual cortex. There may be some further downstream stage in the 

signalling cascade that is sensitive to pairing frequency or the rate and magnitude of calcium influx, 

and which also contributes to differences in the expression of weight change.  

 

In contrast, the degree of depression incurred by STDP has been shown to be independent of firing 

rates at low frequencies in the visual cortex, but entirely absent above ~40Hz pairing frequency 

(Sjostrom, Turrigiano and Nelson, 2001). Hence, the effective window for STDP changes dramatically 

as firing rates increase – at very low frequencies (~0.1 Hz), depression results from pre- then post- or 

post- then pre- synaptic spike pairs; at moderate frequencies (~5 to ~40Hz), the curve is temporally 

asymmetric (see Figure 4); and at high frequencies (>40Hz), potentiation results from all forms of 

spike pairing. There is some analogy here with the BCM formulation, thus reconciling STDP with rate-

coded models of LTP, and each of these properties can be explained in terms of post-synaptic 

depolarisation and Calcium dynamics. However, this result raises further issues regarding stability, as 

the absence of potentiation at low frequencies and depression at high frequencies suggests that extreme 

instabilities in network activity could develop. The use of feedback inhibition, weight-dependent 

potentiation (i.e. multiplicative STDP) or activity-dependent synaptic scaling may all play a part in 

stabilising neural and synaptic dynamics.  

 

Computational modelling studies have also attempted to replicate these additional rate dependent 

features. Plasticity rules which explicitly model intracellular Calcium dynamics or membrane 

depolarisation have been developed, and had some success in replicating the dependency on firing rate 

described above (i.e. a BCM-type curve) as well the dependency on dendritic location and the 

asymmetric temporal profile of plasticity (Castellani et al., 2001; Shouval, Bear and Cooper, 2002; 

Abarbanel et al., 2003; Yeung et al., 2004; Saudargiene, Porr and Wortgotter, 2005; Cai et al., 2007). 

One common problem faced by these models is the appearance of a second window for depression at 

longer pre- then post- synaptic spike pairings, as mentioned previously (see Section 2.15). This is 

widely considered to be biologically unrealistic, although it has been observed in vitro (Nishiyama et 

al., 2000). By making plasticity processes explicitly dependent on the time course of intracellular 

Calcium elevation, rather than the peak concentration achieved, the second LTD window can be 

eliminated, and this protocol may also be more biophysically realistic (Rubin et al., 2005). This model 

also offers some explanation for the notable heterogeneity in observations of synaptic plasticity, as 

membrane, ion channel and synaptic dynamics each contribute to the temporal profile of Calcium 

elevation, allowing much greater scope for variation. However, each of these models is 

computationally expensive and requires a considerable amount of parameter fitting. Elsewhere, 



theoretical models which model the dynamics of transmitter vesicles (in a manner analogous to 

synaptic redistribution), receptor kinetics and secondary messenger pathways can also replicate the 

non-linear dependence of STDP on input firing rate, as well as some aspects of the BCM model (Senn, 

Markram and Tsodyks, 2001). Other research suggests that it may also be possible to reconcile models 

of STDP and LTP with more abstract modifications of the plasticity rule, without resort to the 

modelling of more complex dynamics. 

 

Some studies have also attempted to integrate STDP with other forms of metaplasticity in order to 

dynamically regulate network activity, rather than replicate the firing rate dependency described above. 

In the most abstract form, this can be achieved by placing the value of α under the control of some 

post-synaptic variable, such as firing rate or Ca
2+ 

concentration, so that its value decreases with 

increased activity (Tegner and Kepecs, 2002). The value of the BCM modification threshold can then 

be effectively modulated by adjusting the parameters which describe the asymmetric learning window. 

For example, by altering the values of A+ and A- based on a short term history of post-synaptic spiking, 

the metaplastic regulation of network activity can be achieved with STDP (Benuskova and Abraham, 

2007; Benuskova and Kasabov, 2007). 

 

2.20 Key Properties of STDP: Spike Pair Restrictions 

One approach to modulating the behaviour of STDP with more complex input is to place restrictions on 

the interactions of multiple spike pairs falling within the effective time windows of potentiation and 

depression. Although there is no a priori reason for choosing a particular spike pair restriction model 

and no direct empirical evidence on which to base the decision (but see Froemke and Dan, 2002; 

Froemke et al., 2006), modelling studies have most commonly assumed either that each pre-and post-

synaptic spike pair will sum linearly and independently with all others within the learning window (the 

all-to-all model) or that only temporally adjacent pre- and post- synaptic spikes contribute to plasticity, 

as the internal state of neurons is effectively reset by spiking activity (the nearest neighbour model). 

Analytical studies have suggested that the choice of spike pair restrictions in models of STDP can have 

a significant effect on synaptic weight dynamics (Sjostrom, Turrigiano and Nelson, 2001; Izhikevich 

and Desai, 2003; Burkitt, Meffin and Grayden, 2004). For example, it has been demonstrated that (with 

certain parameter values) STDP can be directly reconciled with a BCM-type curve, provided that the 

nearest neighbour implementation is employed (Sjostrom, Turrigiano and Nelson, 2001; Izhikevich and 

Desai, 2003). Further studies have suggested that the nearest neighbour restriction can be relaxed to 

include numerous neighbouring spike pairs, while still allowing the integration of STDP and the BCM 

formulation, particularly at lower firing rates, where the number of spike pairs falling within the 

effective window for plasticity decreases, and synaptic weights do not converge to their equilibrium 

values (Standage, Jalil and Trappenberg, 2007).  

 

While a value of α>1 is generally used to generate stable network activity, these studies have 

highlighted the fact that subtle differences in the values of individual parameters which define the 

profile of the asymmetric STDP window (i.e. A+, A-, τ+ and τ-) can have a profound effect on network 



behaviour. For example, when the values of A+ and A- are set equal, and the time constant for 

depression is larger than that for potentiation, additional mechanisms are required to ensure that 

potentiation overrides depression at higher firing rates with nearest neighbour STDP (Sjostrom, 

Turrigiano and Nelson, 2001). However, if A+ > A- and the integral over the learning window is still 

negative (i.e. α>1) then no such mechanism is required, and STDP can be directly reconciled with the 

BCM rule (Izhikevich and Desai, 2003). Similarly, other studies have noted that selective potentiation 

of higher rate inputs can be achieved with A+ = A- and τ- > τ+ if an „input-restricted‟ spike pairing 

scheme is employed, such that each output EPSP interacts only with the most temporally proximate 

pre-synaptic spikes to direct plasticity (Burkitt, Meffin and Grayden, 2004; Baras and Meir, 2007). 

However, it is important to note that this result was obtained with a multiplicative STDP model, and 

therefore in the absence of competition between synapses.  

 

2.21 Key Properties of STDP: Inter-Spike Suppression 

An alternative approach to replicating the non-linear features of STDP in computational modelling 

studies is to employ some mechanism which modulates plasticity based on recent synaptic events (a 

form of short-term metaplasticity). Experiments in the visual cortex, for example, have identified a 

suppressive inter-spike interaction which allows the first spike pair in a train of action potentials to play 

a dominant role, while the effects of those pairs which follow within a certain time window are 

suppressed (Froemke and Dan, 2002; Froemke et al., 2006). Interestingly, this can help to stabilise 

firing rates in the face of fluctuations in input activity, much like a conventional competition or 

homeostasis inducing mechanism (Dan and Poo, 2004). It has been hypothesised that this suppression 

of plasticity caused by spike pairs which come later in a burst or train of activity is the result of a 

synaptic redistribution process. However, analytical modelling has suggested that this form of inter-

spike suppression will reduce the selective potentiation of higher rate inputs which can be achieved 

with input restricted STDP (Burkitt, Meffin and Grayden, 2004). 

 

Conversely, studies in cultured hippocampal neurons have demonstrated that depression will cancel 

previously activated potentiation, while potentiation tends to override previously activated depression 

if it is activated within a time window of ~70ms (Wang et al. 2005; Rubin et al., 2005; Gerkin et al., 

2007). This is consistent with the absence of depression at high frequencies that was discussed earlier 

(Sjostrom, Turrigiano and Nelson, 2001). This suppression mechanism again raises issues of stability, 

as the dominance of LTP at higher firing rates might drive synaptic weights and post-synaptic rates to 

saturation. However, the authors were careful to note the existence of size-dependent potentiation 

acting as a stabilising mechanism (Wang et al. 2005). This still leaves an absence of competition 

between synapses, however, and the implications of this finding for the operation of neural networks 

are unclear. The differences in inter-spike suppression mechanisms identified in the VC and 

hippocampus are surprising, given that the properties of synaptic plasticity in these two regions are 

otherwise very similar. Computational modelling has suggested that these differences might be 

attributed to differences in synaptic and dendritic dynamics of these two systems. For example, neurons 

in the hippocampus have a lower probability of vesicle release, exhibit significant paired-pulse 



facilitation, and have a much longer time constant of recovery from paired-pulse depression. When 

these observations are incorporated into synaptic models, the differences in inter-spike suppression can 

be replicated (Cai et al., 2007). 

 

In summary, there have not been enough studies to really characterise the development of synapses 

under STDP with more complex spike trains, but it seems clear that a linear summation is insufficient 

to replicate the processes which are observed in vivo. Furthermore, STDP models in which each spike 

pair can dictate either depression or potentiation make synaptic weights very susceptible to change – 

and thus information stored in a network prone to corruption or erasure. If there are several 

requirements for plasticity – such as post-synaptic depolarisation, repeated pairings to trigger 

secondary messenger pathways or biochemical integrators, and some form of modulatory input – then 

plasticity events become more rare, and synaptic weights less fragile (Lisman and Spruston, 2005). 

This complexity of induction can therefore act as an additional mechanism to promote network 

stability.  

 

2.22 STDP and Spike Triggering Effects 

The majority of previous computational investigations into STDP have been analytical or employed 

independent stochastic spike trains, and in both cases spike triggering effects are effectively neglected 

(e.g. Burkitt, Meffin and Grayden, 2004; Pfister and Gerstner, 2006). However, in real neural networks, 

some form of correlation between input and output action potentials must be assumed, as synaptic 

currents inherently affect the state of their target neurons. Furthermore, the asymmetric nature of STDP 

rules specifically rewards temporal correlations between pre- and post- synaptic spiking, and might 

therefore be expected to result in a strongly correlated unidirectional propagation of activity through a 

network in a manner analogous to synfire chains (Tsodyks, 2002). It has been demonstrated that 

repeated temporal correlations can cause drastic changes in the dynamics of networks which implement 

STDP, reversing the BCM type curve described in previous studies (Standage, Jalil and Trappenberg, 

2007). In order to retain a dialogue with learning and memory processes in real biological systems, 

therefore, the inclusion of spike triggering effects in computational studies of STDP is critical – 

particularly in the modelling of brain regions such as the hippocampus, where highly correlated, 

rhythmic firing patterns (such as gamma and theta oscillations) are common. 

 

2.23 Conclusions 

Synaptic plasticity is a ubiquitous phenomenon that is observed throughout the cortices of a wide 

variety of species, and has been historically linked with the processes of learning, memory and the 

development of neural circuits. Spike-timing dependent plasticity represents the most contemporary 

biological model of synaptic change, and offers the possibility of vastly increasing the computational 

power and complexity of artificial neural networks as well as providing further insight into the 

operation of real brains. However, STDP has yet to be fully characterised, and the difficulties involved 

in making empirical observations at the synaptic level mean that a wide variety of computational 

interpretations exist. These different forms of STDP can generate distinctly different synaptic and 



neural dynamics, and very few studies have attempted to draw comparisons between the possible 

function of these emergent properties.  

 

Computational research has thus far placed an emphasis on forms of STDP that can provide 

unsupervised homeostasis and stability, as these represent the key issues facing previous Hebbian 

learning implementations and are attractive properties from a modelling standpoint. Although there is 

evidence that the value of α>1 in vivo, it is equally clear that this form of the plasticity rule cannot be 

reconciled with previous rate-coded models of Hebbian learning and LTP (such as the BCM 

formulation), as these dictate that an increase in synaptic weights should be produced by increased 

firing rates. In order to replicate all of the observed properties of synaptic plasticity, mediated by both 

rate and temporal coded stimulation protocols, it is critical that the STDP and LTP models be 

reconciled within a single framework. This may require that the attractive homeostatic properties of 

STDP be abandoned in order to more accurately reflect data from real biological systems.  

 

Because the properties of synaptic plasticity vary so widely throughout the cortex, it is useful to 

constrain the modelling decisions involved in a computational examination of STDP by focussing on 

biological data from a single region. This provides a more limited number of properties that need to be 

replicated by the plasticity rule, allows the emergent dynamics of modelling studies to be reconciled 

with systems level function, and may even permit the results of computational simulations to re-inform 

the direction of further biological investigation. A review of the empirical studies described in this 

chapter demonstrates that the vast majority of observations of synaptic plasticity are made in a single 

cortical region – the hippocampus. Hence, a detailed examination of the structure, dynamics and 

suspected function of this region will be made in the following chapter, in order to delineate the 

specific role that synaptic plasticity may perform in this context. 

  

 

 

 



CHAPTER THREE: THE HIPPOCAMPUS AND AUTO-ASSOCIATIVE 

MEMORY MODELS 

 

“What matters in life is not what happens to you but what you remember and how you remember it” 

Gabriel Garcia Marquez 

 

Aims 

 To highlight the fact that the majority of empirical studies of synaptic plasticity are made in the 

hippocampus 

 To describe the theory regarding the role of the hippocampus in declarative memory and, more 

specifically, the role it may play in mediating the processing and short term storage of semantic 

memory, episodic and/or spatial memory 

 To introduce the concept of auto-associative networks, describe their properties, and outline how 

these correspond to the postulated function of the hippocampus 

 To provide a detailed review of the theory that the CA3 region acts as an auto-associative network 

which stores sparse, orthogonalised, activity patterns corresponding to a conjunctive encoding of 

current sensory input, and recalls these patterns from partial cues for recoding and redistribution  

 To emphasise that the vast majority of computational models of the hippocampus make use of auto-

associative networks, that these models have had great success in replicating emergent function, and 

that they depend critically on synaptic plasticity 

 



3.1 Introduction 

The vast majority of neurobiological research into synaptic plasticity has focussed on a single brain 

region – the hippocampus, which is a part of the medial temporal lobe (MTL). This “neural Rosetta 

Stone” (Andersen et al., 2007a) has several features which have consistently made it a popular target 

for neuroscience researchers. Firstly, its straightforward organisation – with all principal cells and 

synaptic inputs arranged in well defined layers – facilitates recording studies. Thus, it was in this 

region that many basic principles of contemporary neuroscience such as unidirectional excitatory 

transmission and the properties of excitatory and inhibitory synapses were first established. Secondly, it 

is possible to make recordings both in awake, freely moving animals and in the hippocampal slice, 

which can be prepared with relative ease and survive for long periods in the lab (Andersen et al., 

2007b). Finally, the basic anatomy of the hippocampal formation is similar in all mammals – making 

comparison and generalisations straightforward. These features have allowed the pyramidal cells which 

constitute around 90% of the hippocampus to become “the most extensively studies neurons in the 

brain” (Andersen et al., 2007a; see also Bird and Burgess, 2008).  

 

3.2 The Biology of the Hippocampus 

The MTL consists of the perirhinal cortex, entorinhal cortex (EC, which is divided into lateral, medial 

and deep layers), dentate gyrus (DG), Cornu Ammonis fields (CA, named for their resemblance to the 

horns of a ram), presubiculum, parasubiculum, and subiculum (or subicular complex; Amaral and 

Witter 1995; Amaral and Lavenex, 2007). The DG, CA1 and CA3 fields are often referred to as the 

hippocampus proper, and the main source of neocortical input to this region comes via the superficial 

layers (II and III) of the EC, which are in turn fed by projections from each of the rhinal cortices. All 

the sensory modalities project into these rhinal cortices – and thus the hippocampus receives 

multisensory, abstracted, highly processed information from the neocortex. Other major sources of 

input to this region are from the brain stem, which might provide idiothetic feedback to the MTL, and 

amygdala, which might provide emotive or motivational input (Churchland and Sejnowski, 1992; 

Lever et al., 2003; Rolls, 2008). There are three major fibre systems associated with the hippocampal 

formation – the fimbria-fornix pathway, which connects the hippocampal formation to the basal 

forebrain, hypothalamus and brain stem regions; the angular bundle, also known as the perforant path, 

which (uni-directionally) connects the EC to the other parts of the hippocampus; and the dorsal and 

ventral commissures, which form a connection between the hippocampal formations of each cerebral 

hemisphere (Amaral and Lavenex, 2007). Backprojections from the hippocampus to the neocortex and 

the anterior nucleus of the thalamus are the two major outputs for neural activity in this region. Thus 

the hippocampus is ideally placed to integrate and inform activity in a wide variety of cortical regions 

(McLelland, McNaughton and O‟Reilly, 1995; Rolls, 1996; Rolls and Treves, 1998).  

 

The most widely known circuit of connections within the hippocampus proper is the tri-synaptic loop, 

which is comprised of unidirectional connections between the EC and DG (the perforant path); DG and 

CA3 (the mossy fibres); CA3 and CA1 (the Schaffer collaterals). Neurons in CA1 project back to the 

subiculum and deep layers of the EC. This uni-directionality is rare among the reciprocally connected 



circuits which characterise the majority of the cortex (Amaral and Lavenex, 2007). However, direct 

projections from the EC to CA1 and CA3 fields exist, are also part of the perforant path, and may be 

functionally significant. The DG is principally comprised of granule cells, while the CA fields are 

mostly comprised of pyramidal cells, which exhibit different neural and synaptic dynamics. Aside from 

this, it is important to note two aspects of hippocampal biology that have been of great importance in 

modelling studies. The first is the existence of dense, recurrent collaterals in CA3; and the second is the 

large number of neurons in the DG – an order of magnitude more than either it‟s main afferent (the EC) 

or efferent (the CA3). The DG is also one of the rare structures within the human brain that increases in 

size (via neurogenesis) throughout life (Andersen et al., 2007b).  

 

 
 

Figure 3.1: The functional connections of the medial temporal lobe 

 

3.3 The Hippocampus, Synaptic Plasticity and Memory 

As described in the previous chapter, the hippocampus has proved to be one of the brain regions where 

synaptic plasticity can be most easily and reliably induced and observed. It was in this cortical region 

that LTP was first identified and the majority of consequent studies which have helped to elucidate the 

mechanisms of synaptic change have been carried out. At a functional level, there is also a wealth of 

evidence which suggests that the hippocampus has a specific role in human memory, making it an ideal 

testing ground for the SPM theory (Rolls and Treves, 1998; Murray, 2000; Andersen et al., 2007b). 

Human memory is commonly divided into two categories: declarative memory, which comprises of the 

knowledge of facts and events; and procedural memory, which comprises of the knowledge of physical 

skills (Tulving, 1972; Cohen and Squire, 1980; Tulving, 1990). These divisions, to some extent, reflect 

the different loci of neural memory processes within the brain.  

 

A role for the medial temporal lobe (MTL) in declarative memory function was postulated as far back 

as the late nineteenth century (Brown and Schafer, 1888). During surgery on epileptic patients in the 



mid-20
th

 century, Wilder Penfield observed that stimulation of the hippocampus could lead to the vivid 

recall of past experiences (Penfield, 1958). This link was later cemented by the study of patients with 

damage to the hippocampal formation (such as the famous case of „HM‟) who exhibit severe 

anterograde amnesia (see Rempel-Clower et al., 1996; Spiers, Maguire and Burgess, 2001 and Corkin, 

2002 for reviews). In an attempt to alleviate severe epilepsy, which had resisted other forms of 

treatment, the patient HM had large parts of his MTL removed. Although this reduced the severity and 

frequency of seizures, it also left the patient with profound memory loss. In particular, HM is 

completely unable to form new memories regarding facts or events, while his general intellect, 

perceptual ability, short-term („working‟) memory, and procedural skills are unaffected (see Stark, 

2007 for an in-depth review). These findings led Scoville and Milner (1957) to propose that the 

hippocampus is “critically concerned in the retention of current experience” and formed the basis for 

several theories regarding the role of the medial temporal lobe in declarative memory (e.g. Cohen and 

Squire, 1980; Squire and Cohen, 1984; Squire, 1986; Squire and Zola-Morgan, 1991; Squire, 1992; 

Schacter and Tulving, 1994; Rolls and Treves, 1998; Eichenbaum and Cohen, 2001; Squire, Stark and 

Clark, 2004; Moscovitch et al., 2005; Rolls, 2008).  

 

Subsequent research has provided significant support for the theory that the general function of the 

hippocampus and surrounding structures of the MTL is to mediate declarative memory. Numerous 

studies of human patients have correlated damage to this region with the impairment of various aspects 

of declarative memory function, while patients usually retain their procedural (i.e. learning skills and 

habits) and working (i.e. short-term) memory as well as a normal vocabulary and perceptual abilities 

(e.g. Smith and Milner, 1981; Gaffan et al., 1984; Parkinson, Murray and Mishkin, 1988; Gaffan, 1994; 

Teng and Squire, 1999; Manns, Hopkins and Squire, 2003; Manns et al., 2003; Crane and Milner, 

2005; Martin, de Hoz and Morris, 2005; Hunsaker, Lee and Kesner, 2008; for reviews see Rolls, 1996; 

Spiers, Maguire and Burgess, 2001; Wood and Dudchenko, 2003; Squire, Stark and Clark, 2004; 

Morris, 2007; Rolls, 2008). More recently, electrophysiological and molecular imaging have provided 

further correlative evidence of a role for the hippocampus in declarative memory (e.g. Eldridge et al., 

2000; Bartha et al., 2003; Rosenbaum et al., 2004; Kirwan and Stark, 2004; see Suzuki and 

Eichenbaum, 2000 for a review of earlier studies). Interestingly, it has also been noted that premature 

babies with significantly smaller than average sized (~10%) hippocampi exhibit marginally impaired 

declarative memory function (Isaacs et al, 2000).  

 

3.4 Retrograde Amnesia and the Multiple Trace Theory 

The fact that the patient HM also demonstrates some temporally graded retrograde amnesia, such that 

he cannot recall events from a limited period immediately preceding the operation, suggests that the 

hippocampus also has a short-term role to play in declarative memory storage. Initially it was 

suggested that, once a memory trace has been encoded, it is slowly transferred from the MTL to the 

neocortex for long-term storage, possibly during sleep (Squire, Cohen and Nadel, 1984; Squire and 

Zola-Morgan, 1991; Squire, 1992; O‟Reilly and Rudy, 2000). There is a considerable amount of 

evidence that recently acquired memories are replayed during slow wave sleep, and that this activity 



plays some part in both their consolidation and transfer (e.g. Sutherland and McNaughton, 2000; 

Stickgold and Walker, 2005; Ji and Wilson, 2007). This configuration of a pairing between networks 

with fast and slow learning rates allows the rapid acquisition of new information and its integration 

with an established hierarchy without interference (Marr, 1971; McLelland, McNaughton and O‟Reilly, 

1995). It has also been observed that the cortex is too sparsely connected to support the encoding and 

storage of arbitrary associations (Rolls and Treves, 1998). It is important to note, however, that the 

hippocampus may need to retain some index of consolidated memories, in order that they can be 

integrated with consequently acquired data.  

 

Human patients with damage to, or lesions of, the MTL demonstrate a wide range of retrograde 

amnesia, some suffering no loss of memories formed prior to the damage while others are unable to 

recall any declarative memories whatsoever (Spiers, Maguire and Burgess, 2001). This has raised some 

controversy regarding the extent to which the medial temporal lobe remains involved with older 

mnemonic traces. The ability of many patients to freely recall distant events suggests that they may 

eventually become completely independent of this brain region (Stark, 2007). However, it has also 

been observed that remote declarative recall is much less detailed in amnesic patients, compared to 

those with healthy brain function (Moscovitch et al, 2005; Rosenbaum et al., 2008). Functional 

imaging studies of healthy adults also demonstrate that the recall of recent and remote declarative 

memories activates the hippocampus equally (Steinvorth, Levine and Corkin, 2005; Cabeza and St. 

Jacques, 2007). It is possible, of course, that this activity is epiphenomenal, and does not actually 

indicate the dependence of remote declarative memory on this brain structure.  

 

The multiple trace theory has been developed in an attempt to integrate these various observations of 

retrograde amnesia into a single framework. The theory posits that each time a declarative memory is 

retrieved, it is re-encoded as a new (or reinforced) set of connections between the hippocampus and 

neocortex. Thus, although older (or more frequently recalled) memories are still reliant on the 

hippocampus, the multiple traces that underlie these memories render them more resistant to MTL 

damage (Nadel and Moscovitch, 1997; Moscovitch et al., 2005, Nadel, Campbell and Ryan, 2007). 

This model can also account for the common observation that declarative memory is frequently 

modified during consolidation, making recall at least partially reconstructive (Bartlett, 1932; Hupbach 

et al., 2007). Recent functional imaging studies have provided evidence that the MTL involvement in 

declarative memory is independent of the age of the memory, and that activity in the neocortex during 

recall (as well as the speed and quality of recall) increases with the frequency of recollection, 

suggesting a continuous process of consolidation  (Nadel, Campbell and Ryan, 2007). 

 

The multiple trace theory is not universally accepted, however, and while it is supported by some 

reviews of human lesion studies (i.e. Fujii, Moscovitch and Nadel, 2000) others suggest that a more 

straightforward transfer from MTL to neocortex would better describe the temporal gradient of 

retrograde amnesia that is often observed (i.e. Spiers, Maguire and Burgess, 2001). One study has 

demonstrated that AMPAr (and therefore, activity) blockade in the hippocampus impedes the recall of 



recently formed paired associations, but if this task is repeated over a period of weeks, then blocking 

AMPA receptors in the hippocampus no longer blocks recall – suggesting that some form of memory 

consolidation had taken place outside of this region (Day, Langston and Morris, 2003). The observation 

that impairment of hippocampal function disrupts the consolidation of memories only if applied within 

a few days or weeks after the event is also supported by numerous animal studies (i.e. Kim and 

Fanselow, 1992; Shimizu et al., 2000). Elsewhere, studies that use the imaging of immediate early 

genes (IEGs, see Section 2.4) to assess network activity and plasticity induction have demonstrated that 

these proteins are expressed only in response to the recall of recent, as opposed to remote, memories 

(see Kubik, Miyahsita and Guzowski, 2007 for a review). Whether these results support a time-limited 

involvement of the hippocampus in memory recall, or simply a time-limited involvement of synaptic 

plasticity in consolidating multiple traces between the hippocampus and neocortex is a matter of 

debate, however. Hence, the timescale and nature of MTL involvement in declarative memory 

consolidation remains a contentious issue, but it is clear that synaptic plasticity plays some role in the 

initial formation and storage of memories in this brain region. 

 

3.5 Semantic Memory 

Declarative memory is commonly divided into several sub-categories: episodic memory (the 

recollection of autobiographical events), semantic memory (regarding the knowledge of abstract facts 

or propositions) and recognition memory (regarding the ability to recognise some stimulus as familiar, 

and thereby recall details about it) (Tulving, 1990; Burgess, 2002). Studies of patients with 

hippocampal lesions have highlighted the fact that these separate forms of memory are differentially 

impaired by damage, which suggests that some form of functional dissociation might exist. For 

example, the retrograde amnesia exhibited by human patients with damage to the hippocampus is 

generally restricted to episodic memory, while semantic memory is unaffected (for reviews, see Rolls 

and Treves, 1998; Redish, 1999; Fujii, Moscovitch and Nadel, 2000; Squire, Clark and Knowlton, 

2001; Squire, Clark and Bayley, 2004; Moscovitch et al., 2005; Steinvorth, Levine and Corkin, 2005; 

Bird and Burgess, 2008). This is particularly well illustrated by a study of patients who suffered severe 

hippocampal damage shortly after birth, and consequently demonstrated the expected impairments in 

episodic memory (such as an inability to remember what they had done that day, their way around, the 

time or date). Surprisingly, each of these patients coped remarkably well in mainstream education, as 

their capacity for semantic processing appears to be relatively intact. The nature of these patient‟s 

lesions has led to the hypothesis that semantic memory, which is perhaps less complex in nature, may 

be mediated by the entorhinal and perirhinal cortices while the hippocampus proper is concerned with 

mediating context-rich episodic memories (Vharga-Khardem et al., 1997).  

 

Subsequent investigation has suggested that this might not be the case, however, and it is more likely 

that the slower rate of learning which is generally attributed to the neocortex allows facts, which are 

more often presented than a unique experience, to be consolidated there in the absence of the rapid 

acquisition system which the hippocampus usually provides (Rolls and Treves, 1998; Squire, Stark and 

Clark, 2004; Bayley et al., 2008). Semantic memories may also be inherently „sparser‟ and therefore 



less affected by damage to the MTL as a whole (Manns, Hopkins and Squire, 2003, Morris, 2007). It 

should be noted, however, that patients with damage that is more widespread in the MTL suffer a 

similar level of retrograde amnesia for semantic and episodic memory (Fujii, Moscovitch and Nadel, 

2000; Spiers, Maguire and Burgess, 2001; Manns, Hopkins and Squire, 2003). Whether this implies 

that semantic memory is stored in the parahippocampal structure or that the MTL is essential for the 

retrieval of semantic memory from the neocortex has yet to be determined, but these findings indicate 

that some structural dissociation between semantic and episodic memory processing may exist (Davies 

et al., 2008). Whatever the case, the vast majority of studies emphasise the fact that the whole MTL 

must be relatively intact to mediate normal declarative memory of any kind, as some deficit is usually 

seen after lesions to any part (Morris, 2007). It is also possible that those who suffer MTL damage 

shortly after birth are able to develop alternative neural mechanisms for mediating semantic memory, 

and that this can account for the relatively small impairment in the learning of facts exhibited by these 

patients.  

 

3.6 Recognition Memory and Novelty Detection 

One aspect of declarative memory for which research has more clearly implied a structural dissociation 

of function within the MTL is recognition memory. The process of recognition is commonly divided 

into two elements – familiarity (i.e. knowing that you have seen someone before, but not the details of 

that encounter) and recollection (i.e. consequently recalling the episode in which you saw them). It has 

been suggested that these two facets may be unified, as familiarity merely represents a very weak form 

of recollection, but other groups contend that there are distinctly different processes involved in each 

stage, and that these may have different loci within the brain (Sauvage et al., 2008). The concept of 

familiarity is closely aligned with that of novelty detection – another property that has a historical 

association with the hippocampus (Knight, 1996; Parkin, 1997; Kesner, 1998; Eichenbaum, 1999; 

Morris, 2007). A commonly cited example of this function is the behavioural differences observed in 

rats in the Morris water maze following hippocampal lesion. These animals are less systematic in their 

exploration, slower to become habituated to the arena and less likely to explore novel objects placed 

therein (O‟Keefe and Nadel, 1978; Morris, 2007).  

 

More specifically, a number of studies of animals with MTL lesions have noted that impairments in 

visual, olfactory and tactile recognition memory are greater if the perirhinal cortex is damaged (for a 

review, see Brown and Aggleton, 2001; Aggleton and Brown, 2006; Viskontas et al., 2006; Kumaran 

and Maguire, 2007). Interestingly, electrophysiological recordings in rats and monkeys have revealed 

that neurons in the perirhinal cortex (as well as other areas of the anterior, inferior temporal cortex, but 

not the hippocampus) exhibit a reduction in response to visual stimuli that have previously been 

encountered. This behaviour is symptomatic of a familiarity system, being rapidly acquired (after a 

single exposure), automatic (occurring even when many stimuli are observed, without attention, even 

under anaesthesia), and lasting for many days (e.g. Rolls et al., 1993; Xiang and Brown, 1998; see 

Brown and Aggleton, 2001; Aggleton and Brown, 2006; Rolls and Kesner, 2006; Kumaran and 

Maguire, 2007 for reviews). IEG imaging studies also demonstrate an increased neural response in the 



perirhinal cortex in response to novel (as oppose to familiar) stimuli (Zhu et al., 1995). It has been 

postulated that, by repressing activity in response to familiar stimuli, the rhinal cortices preferentially 

direct the downstream processing power of the hippocampus towards encoding novel stimuli 

(Fernandez and Tendolkar, 2006; Kumaran and Maguire 2007). 

 

It seems, therefore, that the perirhinal cortex mediates familiarity judgements independently of the 

hippocampus. However, this proposal requires further qualification, as several groups have supplied 

data which indicate that the whole medial temporal lobe must be intact in order to perform this function 

(e.g. Spiers, Maguire and Burgess, 2001; Manns et al., 2003). A review of the literature suggests that 

the role of the perirhinal cortex is restricted to the familiarity of individual stimuli. Lesions of the 

hippocampus provoke relatively little impairment in performance on tests of single stimulus familiarity 

– such as spontaneous object exploration, the delayed non-match to sample (DNMS) task, and item 

recognition (Murray and Mishkin, 1998; Mumby, 2001; Kumaran and Maguire, 2007). Conversely, 

tests which require familiarity with the configuration or context of stimuli seem to depend more 

explicitly on the hippocampus (Brown and Aggleton, 2001; Aggleton and Brown, 2006; Kumaran and 

Maguire, 2007; Sauvage et al., 2008). However, the neural correlates of this process are more difficult 

to isolate, as studies have demonstrated both increases and decreases in activity in response to 

associative familiarity (Suzuki and Eichenbaum, 2000; Fyhn et al., 2002; Kirwan and Stark, 2004; 

Kohler et al., 2005; Viskontas et al, 2006; see Kumaran and Maguire, 2007 for a review). This may 

reflect the complementary processes of increased activity (passed on from the perirhinal cortex) 

reflecting the preferential encoding of novel stimuli, and increased activity due to the recollection of 

previously encountered associative stimuli (Kumaran and Maguire, 2007). It is also important to note 

that successful associative recognition memory by the hippocampus requires attention (i.e. Clark and 

Squire, 1998; Uncapher and Rugg, 2008). 

 

3.7 Encoding, Retrieval and Conjunctive Coding 

Electro-physiological examinations using humans and animals have also identified further differences 

between the rhinal cortices and hippocampus. For example, studies of epileptic patients with electrode 

implants have described how neural activity in the hippocampus during the learning of word pairs was 

correlated with successful later recall, while activity in the entorhinal cortex during recall was 

indicative of successful earlier learning (Cameron et al., 2001). The hypothesis that encoding is 

mediated by the hippocampus, while recall is mediated by the subiculum and rhinal cortices, has been 

supported by a number of other neuroimaging studies (e.g. Kirwan and Stark, 2004; See Stark, 2007 for 

a review). It has also been observed that neurons in the entorhinal and perirhinal cortices can fire 

selectively in response to various sensory stimuli (such as odour or colour), while firing in the 

hippocampus proper corresponds to conjunctions of these sensory stimuli, to more complex sensory 

features (such as facial expressions) or to abstracted representations which incorporate several sensory 

elements (Fried, MacDonald and Wilson, 1997; Wood, Dudchenko and Eichenbaum, 1999; see Suzuki 

and Eichenbaum, 2000 for a review).  

 



For example, in a study in which rats were trained to visit several cups of sand with various odours, a 

significant proportion of conjunctive coding neurons were identified in the hippocampus – some of 

which fired only during the approach to a cup, some when the odour encountered was unexpected, and 

some in response to highly specific combinations of stimuli, behaviour and location (Wood, 

Dudchenko and Eichenbaum, 1999). Of particular interest is a study in which human subjects were 

shown a variety of images of individuals, animals, objects and landmark buildings on a computer 

screen. The activity of single neurons which responded preferentially to some of these stimuli, 

regardless of their context, was identified. For example, a single neuron in the left posterior 

hippocampus was demonstrated to fire at a significantly higher rate whenever images of the actress 

Jennifer Aniston were presented, compared to a baseline rate in response to pictures of other 

celebrities, animals, objects or landmarks. Even more surprisingly, the same neuron would fire when 

the actress‟ name was presented as text on the screen. Single cell responses were also reported for 

Halle Berry, the Sidney Opera House, The Beatles and Bill Clinton (Quiroga et al., 2005). Similarly, a 

more recent study has identified individual neurons in the mouse brain which respond to any object that 

may allow the affordance of a bed or nest (Lin et al., 2007). In summary, these results suggest a general 

increase in the complexity of neural representations, along with the flow of information, from basic 

sensory representations, such as simple and complex cells, in the sensory cortices, to single stimulus 

representations in the rhinal cortices, to the integration of multiple stimuli with spatial, contextual, and 

emotional information in the tri-synaptic loop of the hippocampus proper (e.g. Gabrieli et al., 1997, see 

Squire, Stark and Clark, 2004; Stark, 2007 for a review). 

 

3.8 Critique of the Declarative Memory Theory 

All of the evidence discussed thus far provides general support for the notion that declarative memory 

function is mediated by the hippocampal formation, and this remains the most cited theory of memory 

in neuroscience (Morris, 2007). While there is a large body of neuropsychological evidence from 

humans and other mammals to support the hypothesis, it is by no means conclusive, and has been 

criticised on several grounds (e.g. Gaffan, 2002; Murray and Wise, 2004). It is difficult to explicitly 

examine episodic memory in animals, and the use of human subjects is often impractical. Therefore, 

the majority of support for the theory is obtained from lesion studies, but the extent and loci of damage 

which exists following a lesion is difficult to judge – and the hippocampus is an integral part of several 

neural processing circuits, so impairments do not explicitly imply this cortical region as a functional 

mediator. Similarly, those who have suffered MTL damage from birth may have developed alternative 

neural strategies for various forms of learning and memory. Results obtained from epileptic patients 

can also be questioned on the grounds that these subjects already exhibit abnormal hippocampal 

function (see Redish, 1999; Bird and Burgess, 2008 for a review). The observations of single neuron 

activity in response to sensory stimuli are relatively rare, and recent, and so the theory has also often 

been criticised on the grounds that it lacks the specificity that is necessary to make novel predictions, or 

to identify the computations that are performed in the hippocampus (O‟Keefe, 2007; Bird and Burgess, 

2008). A different class of observations regarding single neuron activity have also given birth to a new, 



or at least partially modified, theory of hippocampal function, which has largely superseded the 

declarative memory theory in popularity. 

 

3.9 The Hippocampus and Spatial Memory 

Spatial memory is a sub-division of declarative memory which relates to the knowledge of ones 

environment and has come to be closely associated with the postulated function of the hippocampus. 

The discovery of distinct sets of pyramidal cells whose activity corresponds directly to various spatial 

features has propelled this theory into the foreground. While examining the hippocampal EEG of rats, 

O‟Keefe and Dostrovsky noted that the activity of certain cells correlated directly with the position of 

the animal in its environment (O‟Keefe and Dostrovsky, 1971). These pyramidal neurons were named 

place cells, and the corresponding areas of the environment which preferentially activated them dubbed 

their place field. Since that time, two other classes of hippocampal neuron with strong spatial activity 

correlates have also been discovered: the head direction cell (in various parts of the hippocampal 

formation, most notably the anterior thalamus and dorsal pre-subiculum; Ranck, 1984; Taube, Muller 

and Ranck, 1990a, b) and the grid cell (in the medial entorhinal cortex, Fyhn et al., 2004; Hafting et al., 

2005). Evidence has also been obtained for neural activity which correlates with idiothetic information 

(i.e. proprioceptive, vestibular and reafferent signals from intended movements), such as velocity cells 

in the pre-subiculum and hippocampus (Sharp, 1996; O‟Keefe et al., 1998) and whole body motion 

cells (O‟Mara et al., 1994). Furthermore, it has been observed that the firing rate of place cells can be 

modulated by speed (Huxter, Burgess and O‟Keefe, 2003; see Bird and Burgess, 2008 for a review). 

The demonstration that place cell activity can be updated in the absence of sensory input suggests that 

these idiothetic inputs may serve to allow the representation of an animal‟s location to be maintained 

during motion in the dark (see O‟Keefe, 2007 for a review).  

 

The discovery of place cells has led to the development of a cognitive map theory of the hippocampus 

that now competes strongly with the declarative memory theory (Tolman, 1948; O‟Keefe and Nadel, 

1978). Broadly speaking, this states that the hippocampus maintains a map of known locations together 

with the distance and direction between them in order to aid efficient navigation. A place 

representation (i.e. collection of place cells) can be activated by direct sensory input, or by the prior 

activity of place cells together with idiothetic information and a prior knowledge of the distance and 

direction between that place and the current location. Head direction and grid cell activity might 

provide the distance and direction metrics needed to form a cognitive map of the environment that 

consists of overlapping place fields, and idiothetic input a means of navigating this map in the absence 

of sensory input (O‟Keefe and Nadel, 1978; O‟Keefe, 2007). A comparison can be made with the 

single neuron activity regarding non-spatial memory that has since been reported (and was discussed 

above) – as discrete (head direction and distance) representations are conjunctively coded by the 

hippocampus to create an abstract representation – in this case, location. The original cognitive map 

theory also purports that, while the function of the hippocampus may be purely spatial in animals, in 

humans it also subserves episodic and linguistic memory. It is important to note that place cell firing 

does not simply reflect sensory input, as it does not change with rotating view in a single location – 



rather, it appears to be an abstracted, conjunctively coded sense of location, mediated by internal 

bearings and distal landmarks (Bird and Burgess, 2008). Later research has demonstrated that, in 

humans and primates, hippocampal cells encode spatial view, while parahippocampal cells encode 

location, allowing both egocentric and allocentric spatial representations to be maintained (Rolls, 

Robertson and Georges-Francois, 1997; Matsumura et al., 1999; Ekstrom, 2003). These spatial view 

cells can also be updated in the dark by idiothetic signals, based on previous knowledge of an 

environment and internal feedback regarding head direction or eye position (Rolls and Kesner, 2006).  

While it is well documented that human patients with damage to the hippocampal formation are 

generally unable to become acquainted with new environments, further evidence in support of the 

cognitive map theory has been provided by numerous experiments on rats with similar lesions who 

show deficits in spatial learning on the Morris water maze and other tasks (e.g. Morris et al., 1982; see 

Section 2.5; Martin, Grimwood and Morris, 2000; and see Rolls, 2008 for a review). Studies of 

macaques and humans with hippocampal damage have also shown that they are impaired in tasks 

where the object seen and the location in which it was seen must be remembered (e.g. Burgess, 

Maguire and O‟Keefe, 2002; Crane and Milner, 2005; see Rolls, 2008 for a review of earlier studies). 

In humans, fMRI studies have demonstrated that hippocampal activity is correlated with active 

navigation tasks (Maguire et al., 1998; Thomas et al., 2001; Hartley et al 2003; Parslow et al., 2004). 

Similarly, studies have shown that the hippocampi of London taxi drivers are significantly larger and 

undergo navigation related structural changes (Maguire et al., 2000). More recently, it has been 

demonstrated that injections of stem cells into the hipocampi of mice allows them to regain previously 

abolished spatial capacity (Yamasaki et al., 2007). Interestingly, it has also been observed that damage 

to the hippocampus impairs the ability of patients to imagine complex scenes, particularly in terms of 

spatial detail (Hassabis et al., 2007). 

 

Furthermore, there have been a substantial number of observations of place cell activity which have 

helped to elaborate on the specific manner in which the hippocampus might encode information about 

the topology of an environment (see O‟Keefe, 2007 for a review). This neural activity has some clear 

correlates with more general concepts of declarative memory. For example, spatial memory is also 

affected by temporally graded retrograde amnesia following hippocampal damage, as demonstrated by 

a study of the patient EP (see Squire, Clark and Bayley, 2004 for a review). Place cells retain the 

activity patterns associated with an environment for a period of months, and their activity can be 

correlated with performance on tests of spatial memory (e.g. O‟Keefe and Speakman, 1987; Thompson 

and Best, 1990). After this period, cognitive maps seem to be stored outside of the hippocampus, as 

research demonstrates that the greater the delay between learning a route and undergoing a 

hippocampal lesion, the better the recall of that route (Redish and Toretzky, 1998; Teng and Squire, 

1999; Squire, Clark and Bayley, 2004). Similarly, the retrieval of spatial maps that were formed in the 

remote past does not activate the hippocampus (Moscovitch et al., 2007). The process of spatial 

memory transfer is, again, associated with sleep – as it has been shown that recently learned place cell 

sequences tend to fire in the same order during slow wave sleep (Wilson and McNaughton, 1994; 

Redish and Touretzky, 1998). 



 

3.10 Critique of the Cognitive Map Theory 

Debate has raged over whether spatial processing represents the primary function of the hippocampus, 

or whether it is merely a subset of declarative memory that is more coherently experimentally 

observable. For example, it is easy to establish where a rat is located within a maze, but harder to 

assess what conscious recollections of the past it may be making. Whether animals possess the 

capability for episodic memory at all has been a matter of some controversy, although several recent 

research papers suggest that many species are capable of episodic recall (Griffiths, Dickinson and 

Clayton, 1999; Eacott, Easton and Zinkivskay, 2005; Kart-Teke et al., 2006). Some proponents of the 

cognitive map theory have suggested that the impaired performace on non-spatial tasks which results 

from hippocampal lesions could be a result of spatial strategies that are employed in these tasks (Stark, 

2007). However, such criticism cannot rule out the growing number of observations of non-spatial 

correlates of hippocampal firing. For example, recent studies have demonstrated that place cell activity 

in the rodent hippocampus simultaneously encodes goal-directed actions (Gothard et al., 1996a, 1996b, 

2001; Ekstrom, 2003; for a review, see Wood and Dudchenko, 2003). This is illustrated by studies of 

rats running in a T-shaped maze, whose place cell activity is distinctly different (for overlapping 

sections of the route) depending on whether they plan to turn right or left at the junction (Wood et al., 

2000; see Redish, 1999 for a comprehensive review of earlier findings). Furthermore, several studies 

have demonstrated that changes in task within a single environment can stimulate changes in the place 

fields of pyramidal neurons (Wiener, Paul and Eichenbaum, 1989; Markus et al., 1995).  

 

The manipulation of non-spatial landmarks in an environment can also drastically alter place cell firing 

(see Eichenbaum, 1996 for a review), and the rate of place cell firing has also been demonstrated to 

code for non-spatial aspects of behaviour, such as objects or other stimuli encountered (Wood, 

Dudchenko and Eichenbaum, 1999; Wood and Dudchenko, 2003; O‟Keefe, 2007). Similarly, place 

cells are often context dependent - their activity being modulated by reward and punishment, for 

example (Wood and Dudchenko, 2003). Studies of macaque monkeys support these findings – the 

occurrence and firing rate of spatial view cells being modulated by expected reward or encountered 

stimuli, and the existence of cells which respond to the presence of objects or conjunctive presence of 

objects and spatial view being documented (Rolls and Xiang, 2005; Rolls,  Xiang and Franco, 2005; 

Rolls and Xiang, 2006). As described earlier, a growing number of animal studies have also identified 

the selective firing of hippocampal cells in response to non-spatial cues, such as olfactory stimuli 

(Wood, Dudchenko and Eichenbaum, 1999), specific objects (Tamura et al, 1992; Rolls, Xiang and 

Franco, 2005; Rolls and Xiang, 2006), arousing stimuli such as food or a known face (Vidyasagar, 

Salzmann and Creutzfeldt, 1991; Salzmann, Vidyasagar and Creutzfeldt, 1993; Fried, McDonald and 

Wilson, 1997) and in humans, in response to various images (Kreiman, Koch and Fried, 2000; Fried et 

al., 2002; see Redish, 1999; Eichenbaum, 2004 and O‟Keefe, 2007 for a review of all of these).  

 

It is important to remember that the cognitive map theory does not deny the involvement of the 

hippocampus in episodic memory function, but merely postulates that spatial memory is the primary 



function of this brain region. It has therefore been suggested by proponents of the cognitive map theory 

that each of the responses described above can be gated by varying the location in which these stimuli 

are encountered (O‟Keefe, 2007). For example, the majority of place fields in the hippocampus retain 

their firing location when non-spatial cues are altered, provided that there is no ambiguity regarding the 

animals current location – although the firing rates do change significantly (Leutgeb et al. 2005a, b). In 

studies of epileptic patients with hippocampal electrode implants, it was noted that a significantly 

higher number of cells would preferentially respond to the presentation of spatial images, such as 

vistas, houses or scenes, as oppose to non-spatial images, such as faces or objects (Kreiman, Koch and 

Fried, 2000). Conversely, it should be noted that tests of spatial memory often employ sparse 

environments with only distal visual landmarks, and therefore an absence of local, non-spatial cues that 

could be encoded (Eichenbaum, 1996). In one study where a standard maze task was furnished with an 

abundance of local visual and tactile cues, an approximately equal number of neurons were 

demonstrated to independently encode spatial and non-spatial cues, while the majority of cells encoded 

conjunctions of non-spatial and spatial information (Young, Fox and Eichenbaum, 1994). Similar 

experiments have also identified a greater number of cells with non-spatial, rather than spatial, 

correlates (Wood, Dudchenko and Eichenbaum, 1999).  

 

Elsewhere, it has been noted that place cells demonstrate some properties which suggest that their 

function is not directed towards cognitive mapping. For example, it is not clear how their activity might 

aid navigation, and the overall activity of place cells does not suggest a cohesive, continuous mapping 

system (Morris, 1990; see Eichenbaum et al., 1999 for a review). Several studies have suggested that – 

rather than forming a homogenous map of known environments – place cell activity reflects an 

independent representation of spatial cues. Place fields are often clustered around areas with local 

stimuli, such as the walls of an arena, and are bound to these cues, so that they will move with the cue, 

rather than remaining anchored to the spatial representation of the rest of the environment (Gothard et 

al., 1996a, b; O‟Keefe and Burgess, 1996; Hetherington and Shapiro, 1997; Shapiro, Tanila and 

Eichenbaum, 1997; Tanila et al., 1997a, b, c). It has also been demonstrated that rats can still 

accomplish path integration after lesions to the MTL, and some human patients demonstrate intact 

spatial processing despite major hippocampal damage (Alyan and McNaughton, 1999; Teng and 

Squire, 1999; see Redish, 1999 and Morris, 2007 for reviews). However, contradictory results have 

also been presented, in which damage to the hippocampal formation impairs path integration, although 

the exact contribution which it makes to this process has not been clarified (Maaswinkel, Jarrard and 

Whishaw, 1999; Save, Guazzelli and Poucet, 2001). These conflicting findings might suggest that, 

while the hippocampus mediates the acquisition and storage of new spatial knowledge, the processing 

of this knowledge, as well as more basic navigational function, occurs outside of this region. For 

example, it has been noted that damage limited to the parahippocampal and parietal cortices can 

specifically impair spatial computation in humans and monkeys (see Rolls and Kesner, 2006 for a 

review).  

 



In essence, this debate can be reduced to a matter of opposing viewpoints – proponents of the cognitive 

map theory argue that there are considerably more significant neural responses to spatial information, 

which suggests that this is the primary function of the hippocampus, although it may have evolved to 

also play a role in the wider processing of declarative memory by embedding the memory of non-

spatial stimuli within the cognitive map (O‟Keefe, 2007). Proponents of the declarative memory 

theory, on the other hand, suggest that space is merely a mental construct, no different from any other 

relational form of associative memory, and that while neural correlates of this more tangible sensory 

stimulus are easier to come by, it remains a subset of declarative memory (Morris, 2007). Supporters of 

the cognitive map theory suggest that the kind of navigation tasks which are impaired by hippocampal 

damage involve knowledge and computation beyond what is directly perceived, so that it cannot be 

considered merely a subset of episodic memory. However, it has been demonstrated that spatial 

processing can be accomplished in the absence of an intact hippocampus, as described previously.  

 

Neither theory is perceived as cogent or able to explain all experimental findings, although the 

cognitive map theory has been able to supply more directly testable predictions and cohesive 

observations, and thus allowed the development of a significant number of more precise models of 

hippocampal function. It should also be noted that there are several other theories regarding the 

function of the hippocampus which take a more abstract view of its function – suggesting that it may 

merely allow the recall of context upon entering a new environment, or that it mediates associations 

and relations between all manner of stimuli, for example (Redish, 1999; Eichenbaum, 2004; see 

Morris, 2007 for a review). Regardless of which of these theories may be the most accurate or able to 

explain the wealth of experimental data obtained from the hippocampus, they generally concur broadly 

when it comes to computational modelling of the MTL, and thereby suggesting how this brain structure 

may perform the different functions attributed to it. Broadly speaking, all groups can agree that rich, 

multi-modal sensory information enters the rhinal cortices, where it is processed into more abstract, 

conjunctional representations which are then stored in the hippocampus for some period of time using 

auto-associative network dynamics.  

 

3.11 Auto-associative Networks 

Auto-associative memory models comprise of a neural network with recurrent connectivity which 

implements some form of Hebbian learning rule. Stable patterns of input activity can be stored in the 

synaptic weights of the recurrent connections, which then drive the dynamics of the network during 

later activity so that entire patterns can be recalled from incomplete or noisy external cues (Marr, 1971; 

Hopfield, 1982; Amit, 1995; Rolls and Treves, 1998; Redish, 1999; Tsodyks, 2005; Rolls, 2008). Non-

linear activation functions or global inhibitory input are often employed in order to stabilise this 

positive feedback system (Rolls and Treves, 1998). These networks represent a powerful tool in 

computational neuroscience, offering a unified implementation of memory encoding, storage and 

retrieval within a robust framework. They also exhibit many features that are analogous with human 

associative memory (Rolls and Treves, 1998; Tsodyks, 2005; Rolls, 2008). Multiple patterns can be 

stored after a single presentation, and these models have the ability to generalise between similar input 



patterns, allowing unsupervised prototype formation and a mechanism of noise reduction (Rolls and 

Treves 1998, Kesner and Rolls 2001). Furthermore, due to the distributed nature of storage, auto-

associative networks exhibit graceful degradation – such that successful recall is only incrementally 

impaired by the loss of constituent synapses and/or neurons. One further property of auto-associative 

networks that has proved critical to their use in mnemonic modelling is the ability to sustain recall 

activity in the absence of input via recurrent self-excitation. Effectively, activity in the network can 

settle into an attractor state in which it will remain until a new input cue is presented that shifts activity 

to a new basin of attraction. This feature has often been likened to a short-term memory mechanism, 

and these attractor networks have been hypothesised to mediate short term memory function in many 

brain regions, including the frontal eye fields, visual cortex, prefrontal cortex and rhinal cortices 

(Miyashita and Chang, 1988; Rolls and Tovee, 1994; Amit, 1995; Goldman-Rakic, 1996; see Rolls and 

Treves, 1998 and Rolls, 2008 for reviews). 

 

3.12 Auto-associative Network Models of the Hippocampus 

The vast majority of computational theories regarding the function of the hippocampus in human 

memory make use of the properties of auto-associative networks, since Marr‟s classic model was 

published in 1971. These modelling studies have successfully replicated various aspects of navigation, 

spatial and episodic memory – and related these models to known properties of various hippocampal 

regions (see Tsodyks, 1999; Redish, 1999; Lever et al., 2003; Rolls, 2008 for reviews). Although the 

basic architecture of these models is identical, they differ significantly in their properties, often 

according to the postulated function which they assign to the hippocampus. Those who emphasise the 

role of the hippocampus in episodic memory generally suggest that input from a variety of sensory 

areas (as well as the brain stem and amygdala) is integrated by the rhinal cortices and then encoded as 

abstract, discrete patterns of activity in the hippocampus proper (i.e. Rolls and Treves, 1998; Hasselmo 

and Eichenbaum, 2005; Rolls, 2008). The encoded memories are stored as discrete attractors by the 

plastic synapses of the CA3 network – which exhibits an extensively recurrent architecture, and is one 

of the first networks on the tri-synaptic loop where information is integrated rather than segregated 

(Suzuki and Amaral, 1994a, b; Rolls and Treves, 1998). The later input of partial cues, representing 

some portion of the original memory, can then drive the dynamics of the CA3 network back to this 

attractor state, so that output activity corresponding to the original pattern of sensory stimulation in the 

rhinal cortices (and other neocortical areas) can be reinstated – allowing recall of the memory, and 

possible transfer for long-term storage in the cortex. Another of the main outputs of the hippocampus, 

via the fornix to the anterior nucleus of the thalamus, may also allow this output to influence direct 

action (Rolls and Treves, 1998). In light of this model, semantic memory may also be considered as 

prototype extraction from episodic memory (Eichenbaum, 2004). 

 



 
 
Figure 3.2: The architecture of a typical auto-associative network 

 

In auto-associative network models, interference between the recall of learned patterns is minimised if 

the overlap of representations is kept to a minimum, and it has been theorised that the size of the DG 

indicates that its function is to generate sparse and distinct patterns of input based on the information it 

receives from the EC - a process known as pattern separation or orthogonalisation (Marr, 1971; Rolls, 

2008). The capacity of attractor networks (and therefore, perhaps, the CA3 region) to maintain recall 

firing patterns may also act as a putative short term memory mechanism. Discrete auto-associative 

networks, by nature, demand symmetric weight matrices, so that a complete pattern can be recalled 

from any set of cues (Rolls, 2008). However, they can be easily extended to allow the storage of 

sequences, which represents another key feature of declarative memory (Levy, 1996; Wallenstein, 

Eichenbaum and Hasselmo, 1998; Lisman, 1999). In this extension of the model, asymmetric 

connections are necessary to ensure that the temporal order of a pattern is preserved during recall, and 

these connections must operate on a slower time scale than the process of pattern completion, so that 

each section of the dynamic pattern can be fully recalled before activity shifts to the subsequent section 

(Rolls and Treves, 1998). Most models have yet to identify a biologically plausible manner of 

implementing this constraint, however. 

 

Conversely, those who emphasis the role of the hippocampus in spatial memory generally make use of 

continuous attractor network models, which employ a flat energy landscape and global inhibition to 

maintain a single localised „bubble‟ of input activity via recurrent excitation (i.e. Samsonovich and 

McNaughton, 1997; Tsodyks, 1999; Fuhs and Toretzky, 2006; McNaughton et al., 2006; Stringer and 

Rolls, 2006). This activity packet can then be shifted by external input to move smoothly across the 

network – analogously to the encoded position of an animal within a cognitive map being updated by 

idiothetic cues. In this context, a one dimensional (ring) network can be used to represent head 

direction, while a two-dimensional (toroidal) network can be used to represent location, both being 

updated by external sensory input or feedback from the brain stem. These models can be more directly 



based on, and compared with, empirical data, due to the wealth of observations regarding the activity of 

place, head direction and other spatially correlated cells. There is also some more subtle computation 

involved in spatial attractor network models – as the output should not just be the recall of the 

appropriate cognitive map, but also some form of processing regarding goals, actions or short cuts 

within that locale. Continuous attractor network models also rely on symmetric weight matrices, as 

associations between adjacent head directions or known places must be identical, regardless of the 

direction of approach. However, like discrete attractor networks, they can easily be extended to allow 

the learning of sequences – which could, in this case, correspond to well known routes. Because they 

utilise the same architecture, it is also possible that the CA3 network can integrate both spatial and 

episodic memory function, and thus recall discrete objects or experiences from locational input and 

vice versa (Rolls, Stringer and Trappenberg, 2002).  

 

3.13 Biological Correlates of Auto-associative Function in the Hippocampus 

Auto-associative network models of declarative memory function offer several testable predictions, 

based on the manner in which they divide processing tasks among different regions of the MTL (see 

Eichenbaum, 2004; Kesner, Lee and Gilbert, 2004; Rolls and Kesner, 2006; Kesner, 2007a, b; Leutgeb 

and Leutgeb, 2007 and Rolls, 2008 for reviews). These models theorise that the dentate gyrus acts to 

produce sparse non-redundant representations of arbitrary sets of concurrent neural activity in the 

pyramidal neurons of the CA3 region, as such patterns are required for successful auto-association. The 

entorhinal cortex demonstrates preferential activation in response to novel stimuli, so that particular 

emphasis is placed on the representation of these stimuli in downstream processing stages. These 

patterns are rapidly encoded in the synaptic weights of the CA3 network using Hebbian plasticity, and 

the synapses of the perforant path are also adjusted to allow direct connections from the entorhinal 

cortex to stimulate future recall from noisy or incomplete cues. The function of the CA1 network is to 

recode the abstract, conjunctive code which is stored by CA3 into the form in which it originally 

arrived from the sensory cortices. 

 

There is a substantial amount of evidence to suggest that the DG is involved in a process of pattern 

separation and the encoding of novel memories. For example, studies have demonstrated that mossy 

fibre input (from the DG to CA3) is essential for the process of learning in the Morris water maze, but 

not for the recall of routes which had been learned earlier (Lasalle, Bataille and Halley, 2000; Lee and 

Kesner, 2004; Jerman, Kesner and Hunsaker, 2006). It has also been demonstrated that the perforant 

path is consequently essential for memory retrieval (Lee and Kesner, 2004). Functional imaging studies 

have correlated activity in the DG during the early stages of a trial with successful spatial learning, and 

shown that this activity dictates that in the CA3 field. During later training, when recall processes may 

begin to dominate, it is activity in the CA fields which correlates with successful performance, and the 

influence of DG activity is vastly reduced (Poirier, Amin and Aggleton, 2008). Elsewhere, it has been 

demonstrated that enriched environments provoke a larger DG, with more granule cells, in rats 

(Kempermann, Kuhn and Gage, 1997).  

 



It is also well known that mossy fibre synapses are very large, and may thus be capable of driving the 

firing of CA3 neurons. It is essential that activity in an auto-associative network approximates external 

input during learning, otherwise a pattern which combines input and recall activity will be stored by the 

recurrent synapses. Studies of synaptic plasticity in the CA3 network have demonstrated that the 

depolarisation caused by input from the mossy fibres is critical for robust potentiation to be induced in 

the CA3 network (Kobayashi and Poo, 2004). The evidence obtained in this study also suggests that the 

mossy fibres release a mGluR mediated signal to further facilitate LTP in the recurrent synapses, as 

well as providing sufficient input to provoke activity in the post-synaptic pyramidal neuron. Hence, 

input from the dentate gyrus is essential for the induction of LTP in the CA3 network. Neural activity 

in the DG is also sparse, with the place fields of granule cells being small and highly reliable. The 

hetero-synaptic, non-associative form of plasticity observed at mossy fibre synapses may also act to 

enhance the signal to noise ratio of these neural representations (see Rolls, 1996; Rolls and Treves, 

1998; Kesner, Lee and Gilbert, 2004 and Rolls, 2008 for a review of these findings).  

 

Selective lesions of the dentate gyrus have been observed to significantly reduce the reliability of CA3 

neural firing fields, and when DG lesioned rats are exposed to similar spatial locations, their inability to 

discriminate between them is correlated with the extent of their lesions, and with the similarity of the 

environments – implying a deficit in pattern separation (McNaughton et al., 1989; Gilbert, Kesner and 

DeCoteau, 1998; Gilbert, Kesner and Lee, 2001). Rats with lesions of the DG also exhibit little 

exploratory interest after the reconfiguration of object locations, when compared to control / CA1 

lesioned rats, suggesting that they are unable to distinguish between the changed environments due to 

an absence of pattern separation (Goodrich-Hunsaker, Hunsaker and Kesner, 2005). Similarly, DG-

lesioned rats have great difficulty learning a water maze when their start position is changed for each 

trial (Lee and Kesner, 2004). The need for a pattern separation process, mediated by the DG, is further 

illustrated by studies which show that a deficit in learning object-place paired associations is only 

apparent in lesioned mice if the stimuli are close together (Gilbert and Kesner, 2003).  

 

Of course, it is the conjunction of the dentate gyrus and CA3 region which is theorised to mediate 

successful auto-associative learning of arbitrary activity patterns. We have seen that the DG is 

specifically implicated in encoding, as oppose to retrieval, processes. Similar learning deficits are 

observed in animals with CA3 lesions, and in animals with contralateral lesions (in which the CA3 

region is lesioned in one hemisphere, and the DG in the other) (Jerman, Kesner and Hunsaker, 2006). 

These results clearly imply that these regions of the hippocampus operate in unison to encode and store 

sparse activity patterns relating to sensory experience. More recent functional imaging studies support 

the theory that a process of pattern separation takes place in the dentate gyrus and CA3 field, while the 

effects of pattern completion and recoding can be observed in the CA1 field and parahippocampal 

structures (Bakker et al., 2008). Further studies have demonstrated that neurotoxic lesions of CA3 

impair the learning of a novel environment, while similar lesions to CA1 have no such effect (Lee and 

Kesner, 2003). It has also been demonstrated that place fields within a novel environment are acquired 

and altered much more rapidly in CA3 than in CA1 (Lee, Rao and Knierem, 2004). This varying time 



course of CA1 and CA3 activity is further illustrated by studies which demonstrate that, when learning 

a maze, rats with CA3 lesions are impaired on same-day performance, while those with CA1 lesions 

are only impaired in retrieval across days (Jerman, Kesner and Hunsaker, 2006; Vago et al., 2007). It 

has also become clear that the CA3 region is important for tasks which require multiple trials to learn, 

such as object-place and odour-place paired association learning (Gilbert and Kesner, 2003; Lee and 

Kesner, 2003). For example, CA3 lesioned mice are often unable to learn the water maze, which 

requires multiple trials (Brun et al., 2002).  

 

Elsewhere, studies have demonstrated that distinct, sparse activity patterns are generated in the CA3 

region in response to virtually identical environments – a clear example of a pattern separation process, 

probably inherited from the dentate gyrus (Tanila, 1999; Leutgeb et al., 2004; Vazdarjanova and 

Guzowski, 2004). The sparse patterns that exist in CA3 have also been demonstrated to change 

discontinuously in response to changes in the external environment, suggesting a process of 

orthogonalisation, while activity in CA1 is altered more systematically in response to environmental 

manipulations (Vazdarjanova and Guzowksi, 2004; Leutgeb et al., 2005c). Much fewer CA3 (~18%) 

than CA1 (~35%), and even fewer DG (~2%) neurons are active during each stage of these tests, which 

further attests to the sparseness of representations and the progression of the pattern separation and 

completion process along the tri-synaptic loop (Vazdarjanova and Guzowski, 2004). Similarly, there 

are distinct differences in the overlap of activity patterns within each region of the hippocampus when 

animals are placed in very similar environments. In CA3, distinct subsets of pyramidal cells which 

overlap with no greater than chance probability are activated, regardless of the similarity of the testing 

enclosures, while in CA1 the activated populations overlap, and the degree of this overlap increases 

with the similarity of the enclosures (Vazdarjanova and Guzowksi, 2004; Leutgeb et al., 2004).  

 

The CA3 region is also hypothesised to play a role in pattern completion during the recall of stored 

episodic memories from partial cues, and this property has been supported by various empirical 

findings. It has been demonstrated that both CA3 and CA1 are required for the retrieval of spatial 

knowledge, although larger deficits are produced by CA1 lesions (Hunsaker, Lee and Kesner, 2008). 

For example, rats with CA3 lesions performing a task in which a number of cues are available during 

learning exhibit a linear degradation in recall which correlates directly with the removal of cues. Thus, 

the rats seem unable to generalise from the recall environment, with a reduced number of cues, to the 

original learning environment, via a process of pattern completion (Gold and Kesner, 2005). Similarly, 

transgenic mice that specifically lack NMDA receptors in the CA3 field are unable to identify known 

environments when a subset of the local cues are removed (Nakazawa et al., 2002). Another study 

examined the behaviour of place cells as an arena was slowly morphed between different shapes, and 

demonstrated that activity in the CA3 region abruptly switched between two distinct patterns. This 

implies the use of discrete attractor dynamics, as activity is resistant to small changes in environment, 

but will then shift drastically to a new basin of attraction once the differences become significant (Wills 

et al., 2005).  

 



It is important to note that the conflicting nature of the pattern separation and completion processes 

occurring within CA3 can lead to confusing results – for example, we have seen how perturbations in 

an environment will lead to the activation of a distinct set of pyramidal neurons in CA3, as evidence of 

pattern separation. It has been noted elsewhere that CA3 activity can remain constant during mild 

changes in an environment – which may seem contradictory, but has been taken as further evidence for 

generalisation and attractor dynamics operating therein (Vazdarjanova and Guzowksi, 2004). The 

conflicting processes of pattern separation and completion can be considered as a sigmoidal process 

between input and output similarity. If input patterns are only marginally dissimilar, then a process of 

pattern completion will maintain activity within a single basin of attraction, but once some threshold of 

similarity is crossed, pattern separation will occur and activity within the CA3 region will shift 

significantly to some new basin of attraction (O‟Reilly and McClelland, 1994; McClelland and 

Goddard, 1996). This process may also explain the commonly observed phenomena of remapping in 

place cells (i.e. Fyhn et al., 2007). 

 

Other research studies have identified persistent activity in the CA3 region during the delay period of 

short-term memory tasks, and it has been also been demonstrated that spatial view neurons maintain 

their activity patterns in the absence of visual input (Rolls et al., 1989; Wirth et al., 2003). These 

findings imply that the CA3 network may maintain firing patterns in an attractor state until a new cue is 

presented, acting as a short-term memory buffer. This role has been postulated for the region, due to its 

recurrent connectivity, but is not essential to its function, or directly proven by these results, as partial 

cues obtained from sensory experience could be maintained (or „clamped‟) by some other, upstream 

processing unit such as the dentate gyrus or entorhinal cortex (Kesner and Rolls, 2001; Rolls and 

Kesner, 2006). 

 

3.14 Auto-associative Network Models and Synaptic Plasticity 

The fact that synaptic plasticity is so easily and reliably observed in the hippocampus provides further 

impetus to the theory that this region may operate as an auto-associative network. A process of synaptic 

plasticity is integral to the performance of these models, and many studies have provided explicit 

evidence for the role of LTP in hippocampal function (see Section 2.5). Indeed, the principles of 

associative learning are closely linked with those of Hebbian plasticity – that connections between 

concurrent events (behavioural or neural) are strengthened, so that in the future, the stimulation of one 

will provoke stimulation of the other. In particular, it has been repeatedly demonstrated that obstructing 

plasticity in the CA3 region prevents the rapid acquisition of new information (see Rolls and Kesner, 

2006 for a review). It has also been shown that blocking plasticity (using an NMDAr antagonist) in 

CA3 impairs the learning of novel environments, whereas impairing LTP in CA1 or DG had no such 

effect (Lee and Kesner, 2002). Further work has elaborated on this result, confirming that NMDA 

antagonists impair declarative encoding and learning processes, with no effect on recall, and also 

demonstrating that AMPA receptor blockade impaired both learning and recall (Day, Langston and 

Morris, 2003). Similar results were obtained with transgenic mice, engineered to lack NMDA receptors 

specifically in the CA3 field. A number of studies using these mice have demonstrated that plasticity in 



CA3 in essential for the rapid and automatic formation of episodic memories (Nakazawa et al., 2002; 

Nakazawa et al., 2003; Cravens et al., 2006). Some studies have gone further, in demonstrating that 

synaptic plasticity processes are specifically activated when animals encounter novel configurations of 

sensory stimuli for the first time (Lee and Kesner, 2002). There is also evidence that enriched 

environments lead to the regulation of several properties of neural and synaptic dynamics in the 

hippocampus, such as the increased decay of LTP, which are indicative of increased information 

turnover (Irvine et al., 2005). The use of immediate early gene (IEG) imaging has also provided 

support for the critical role of synaptic plasticity in hippocampal function. For example, various 

plasticity related IEGs are expressed in the hippocampus following spatial exploration, particularly in 

novel environments or after the re-arrangment of local cues (see Kubik, Miyashita and Guzowski, 2007 

for a review). 

 

3.15 Conclusions 

In this chapter, a substantial body of experimental data which provides support for the theory that the 

hippocampus plays a significant role in declarative memory processing has been presented. This brain 

region is particularly implicated in the initial formation and short-term storage of episodic and/or 

spatial memories, and a substantial body of evidence suggests that this function is mediated (at least, in 

part) by auto-associative network dynamics. Broadly speaking, it is hypothesised that the dentate gyrus 

creates a sparse, abstract and conjunctive code from the sensory representations present in the rhinal 

cortices (with stronger activation for novel stimuli), and that this activity pattern is then rapidly stored 

in the recurrent collaterals of the CA3 region by synaptic plasticity. This general model can be 

considered an inclusive, neurobiological theory of MTL function which integrates observations of 

synaptic plasticity, neural activity and emergent dynamics in this region (Morris, 2007).  

 

It can only be presumed that the process of natural selection has developed this system as a robust and 

efficient means of mediating declarative memory in the mammalian brain, and that by attempting to 

replicate the neural and synaptic dynamics of the hippocampus (and surrounding parts of the MTL) as 

closely as possible, a similarly successful computational model of declarative mnemonic processing 

might also be developed. Such a model will have clear benefits for the study of artificial intelligence 

and various mobile robotics applications. Although the complexity of this task is beyond the scope of 

contemporary computational neuroscience, developing a biologically realistic auto-associative network 

model appears to represent the critical first step towards this ultimate goal. These networks underpin 

wider models of both episodic and spatial memory function, and are worthy of study in their own right 

as minimal network architectures that can perform useful computational processes.  

 

The discussion presented in the preceding chapters makes it clear that synaptic plasticity plays a critical 

role in mediating both the function of auto-associative networks and mnemonic processing in the 

hippocampus. In the following chapter, the learning rules that have been commonly implemented in 

auto-associative network models will be assessed with regard to the emergent properties of synaptic 

plasticity in the hippocampus which were described in the previous chapter. Simultaneously, the neural 



dynamics and wider details of common auto-associative network models will be assessed in light of 

their relation to the observed neurobiology of the CA3 region. This should provide an insight into 

which features of these models might have their biological realism improved, and how this might 

contribute to developing a more complex and computationally useful auto-associative network model 

of the CA3 region. The resulting auto-associative network could then be integrated into various wider 

models of the postulated function of the hippocampus in both episodic and spatial memory, in order to 

provide them with a firmer basis in modern neurobiology. 



CHAPTER FOUR: EXPERIMENTAL AIMS 

 

“Neither one should hesitate about dedicating oneself to philosophy when young, nor should get tired 

of doing it when one is old, because no one is ever too young or too old to reach one's souls healthy” 

 Epicurus 

 

Aims 

 To highlight the fact that few previous modelling studies have investigated the emergent dynamics of 

STDP specifically within a recurrent architecture, or attempted to employ this plasticity rule within 

an auto-associative network 

 To emphasise the fact that auto-associative networks represent an ideal framework in which to 

attempt a reconciliation of temporally coded and rate coded plasticity models 

 To identify the key properties of Hebbian learning rules that contribute to efficient auto-associative 

network function, and which must therefore be replicated by STDP within this context 

 To identify other shortfalls in biological realism that commonly exist in auto-associative network 

models of the hippocampus 

 To discuss how the properties of STDP which have been identified by previous modelling studies 

might address these shortfalls, and describe any features of the plasticity rule that may be detrimental 

to auto-associative network function 

 To define the aims of this research and describe the general features of the network model that will 

be examined in the following chapters 

 



4.1 Introduction 

In the preceding chapters, a wealth of evidence linking the process of long-term potentiation with 

associative memory function in the hippocampus has been presented, although it is also clear that 

synaptic plasticity alone may not be sufficient to fully explain the complexities of this behaviour. 

STDP represents the most contemporary plasticity rule formulated from electrophysiological 

recordings of this brain region and offers several advantages for the operation of neural networks such 

as increased information processing power and inherent homeostasis. However, many different 

computational interpretations of STDP exist, and these have yet to be unified or reconciled with 

previous synaptic plasticity models and the suspected function of the hippocampus. Auto-associative 

networks represent the most successful approach to modelling this postulated function, and can directly 

reconcile observations of synaptic plasticity and neural dynamics with systems level properties. These 

models are attractive because they offer a unified description of the encoding, storage and retrieval 

processes that constitute declarative memory, and can replicate features of both episodic and spatial 

memory function. Because auto-associative function relies critically on rate-coded Hebbian learning, 

these networks also represent an ideal framework in which to attempt a reconciliation of STDP with 

previous rate-coded plasticity rules.  

 

To date, no computational studies have specifically aimed to characterise the emergent neural and 

synaptic dynamics of STDP within a recurrent neural architecture, and only one has attempted to 

reconcile this plasticity rule with the successes of previous auto-associative models of the hippocampus 

(Samura and Hattori, 2005). The vast majority of previous computational modelling studies that have 

sought to characterise the emergent properties of STDP have made use of feed-forward networks or 

multiple afferent synapses of a single neuron. It is surprising that examinations of STDP have so often 

proceeded without reference to its role in hippocampal information processing, as it is in this region 

that the majority of empirical observations of synaptic plasticity and mammalian memory function are 

made. Where STDP has been implemented within a recurrent network, the focus of research has most 

frequently been on modelling the function of the visual cortex, the role of sub-threshold membrane 

potential oscillations which occur during slow wave sleep, or the self-organisation of networks through 

spontaneous activity (i.e. Wenisch, Noll and van Hemmen, 2005; Yasui et al., 2007; Kang, Kitano and 

Fukai, 2008).  

 

More recently, several research projects have employed STDP within an auto-associative framework in 

order to learn and recall dynamic patterns (i.e. temporal sequences of neural spiking) – a form of 

learning for which this plasticity rule is ideally suited (i.e. Lengyel et al. 2005; Yamaguchi et al., 2007; 

see also Section 2.16). However, these projects have made no attempt to reconcile STDP with the 

process of learning and recalling static rate-coded activity patterns (be they discrete or continuous) 

which characterises the majority of previous auto-associative modelling of the hippocampus. In the one 

case where static, bi-directional auto-associative memory function has been examined, a symmetric 

form of STDP that may not be realistic of the CA3 region was utilised (Samura and Hattori, 2005). A 

substantial amount of analytical work has provided invaluable insight into the limits and nature of 



emergent synaptic dynamics, but these results cannot be directly applied to, or inform the nature of, 

more complex network behaviour, which might incorporate spike triggering effects and non-Poissonian 

firing patterns, for example (i.e. Izhikevich and Desai, 2003; Burkitt, Meffin and Grayden, 2004; 

Standage, Jalil and Trappenberg, 2007).  

 

In summary, synaptic plasticity is critical to the function of auto-associative networks, and is most 

frequently, easily and reliably observed in the hippocampus. Contemporary neurobiological 

investigation of this region has delineated a spike-timing dependent plasticity model that differs 

significantly from the rate-coded Hebbian learning rule most commonly implemented. Hence, it seems 

that there is a pressing need to reconcile the properties of STDP with the dynamics of auto-associative 

networks, as these processes are both likely to be critical to the function of the hippocampal formation. 

These models are also worth studying for their own sake, as minimal neural network architectures 

which can perform effective and useful computational processes.  

 

The primary aims of this research, therefore, are three-fold. Firstly, the emergent synaptic dynamics of 

numerous models of STDP will be examined within a recurrent neural network that is consistently 

inspired by the neurobiology of the CA3 region, in order to characterise the properties of the plasticity 

rule within this framework. Secondly, a more specific attempt to reconcile STDP with the emergent 

dynamics of previous rate-coded models of Hebbian learning and properties of synaptic plasticity in the 

CA3 region will be made. Finally, any forms of STDP that are capable of mediating rate-coded 

processing will be implemented within a simple auto-associative network model of the CA3 region, in 

order to further illuminate any factors which influence the efficient operation of the plasticity rule 

within this context. This should allow an assessment of the functional implications of STDP within the 

CA3 region of the hippocampus to proceed, and provide previous auto-associative network models 

with a firmer basis in modern neurobiology. Several issues that constrain and inform the modelling 

decisions involved in constructing a framework for this research will now be discussed in more detail.  

 

4.2 Biological Realism in Previous Auto-associative Network Models of the Hippocampus 

There are several issues that arise when attempting to reconcile the operation of common auto-

associative network models with empirical observations of activity in the hippocampus. These 

problems are not sufficient to bring the general framework into doubt, but rather represent areas where 

biological realism might be improved. For example, the firing patterns generated in recurrent neural 

networks often differ significantly from those observed in vivo. In the majority of previous models, 

active neurons fire close to saturation, at a level much higher than that observed in the CA3 region, 

while background neurons are effectively silent (i.e. Marr, 1971; Hopfield, 1982; Roudi and Latham, 

2007). Intrinsic plasticity mechanisms, inhibitory input and sigmoidal activation curves have each been 

employed to address these issues (i.e. Rolls, Stringer and Trappenberg, 2002; Triesch, 2007). 

Furthermore, typical network models generally operate using either time averaged firing rates or 

extremely regular spiking dynamics, while activity patterns observed in vivo are generally much more 

irregular and can exhibit several distinct examples of oscillatory behaviour (i.e Samsonovich and 



McNaughton, 1997; but see Mongillo et al., 2005). This problem is exacerbated by the fact that active 

neurons in working memory network studies often fire more regularly than background neurons, which 

directly contradicts empirical data (see Roudi and Latham, 2007 for a review). 

 

Frequently, learning and recall processes have also been arbitrarily separated in previous modelling 

studies. In auto-associative networks, it is essential that external input dominates the dynamics of the 

network during learning, in order to avoid interference between this process and the recall of 

previously established patterns (Rolls and Treves, 1998). In the hippocampus, however, it seems likely 

that plasticity processes continue at all times, although they may be modulated by a number of different 

factors (e.g. Hasselmo, 2006; see Section 2.4). In particular, research discussed in the preceding 

chapters has highlighted the separate roles of input from the dentate gyrus for learning, and from the 

entorhinal cortex for recall, as well as the manner in which input from the DG can facilitate synaptic 

plasticity (see Section 3). In the absence of modulation, however, it is critical that both learning and 

recall processes can be accounted for while synaptic plasticity remains continually active.  

 

The ability to maintain firing patterns as a stable attractor state of the system once external stimulation 

has been removed has often been incorporated into auto-associative models of the hippocampus as a 

putative short term or working memory mechanism. This feature is supported by observations of 

persistent activity during working memory tasks in vivo. Although this function is attractive from a 

computational modelling standpoint, and a subject of research into working memory models in its own 

right, it is not considered to be an essential feature of auto-associative memory models of the 

hippocampus. It is possible that external cues are maintained, even after the sensory stimuli that created 

them have been removed, by a structure that is upstream of the CA3 region, such as the entorhinal 

cortex (Rolls, 2008).  

 

4.3 Synaptic Plasticity in Previous Auto-associative Network Models of the Hippocampus 

In previous computational studies, auto-associative network models of episodic memory function have 

frequently made use of synaptic plasticity in order to develop weight matrices which reflect patterns of 

external input. Conversely, continuous attractor network models of spatial memory function have often 

omitted plasticity altogether, choosing instead to arbitrarily implement the desired „Mexican Hat‟ 

connectivity in recurrent synaptic weights and make no allowance for changes in this weight matrix 

during simulations (i.e. Samsonovich and McNaughton, 1997; Menschik, Yen and Finkel, 1999; 

Conklin and Eliasmith, 2003; Fuhs and Touretzky, 2006). It has been established that the performance 

of such models is extremely reliant on an appropriate synaptic weight matrix being developed and 

maintained, with a change of as little as 1% in synaptic strengths causing a significant (and unrealistic) 

drift of activity (see Brody, Romo and Kepecs, 2003 for a review). Other research has successfully 

employed synaptic plasticity to develop self-organising continuous attractor network models of various 

spatial memory processes, however (i.e. Stringer, Rolls and Trappenberg, 2005; Stringer and Rolls, 

2006).  

 



In the vast majority of studies that do utilise plasticity, Hebbian learning rules which strengthen 

connections based on correlations between mean firing rates are employed (i.e. Rolls, Stringer and 

Trappenberg, 2002; Stringer and Rolls, 2006; but see also Mongillo et al., 2005). In some cases, 

unconstrained plasticity is allowed, with global feedback inhibition being used to allow efficient recall 

from perpetually escalating synaptic strengths (i.e. Rolls, Stringer and Trappenberg, 2002). However, 

some form of heterosynaptic LTD has been identified as generally essential for maintaining efficient 

operation in auto-associative networks (Rolls, 1996; Rolls and Treves, 1998; Rolls and Kesner, 2006). 

This is commonly achieved through the use of a synaptic scaling mechanism, and there is a substantial 

body of empirical evidence to support the existence of such a process in the hippocampus (i.e. Stringer 

and Rolls, 2006 and see Section 2.10). 

 

STDP has several properties which may contribute to improving the biological realism of auto-

associative network models, but some that may also be detrimental to its performance in this role. For 

example, previous research has suggested that STDP specifically promotes irregular firing activity by 

maintaining membrane potentials at a level close to that required to provoke spiking (Song, Miller and 

Abbott, 2000; see Section 2.17). This is manifested as a value for the co-efficient of variation of neural 

activity that is relatively constant in the face of increases in pre-synaptic firing rate, and which occupies 

a range comparable to that observed in vivo (see Roudi and Latham, 2007 for a review). Conversely, 

the asymmetric learning window which characterises STDP implicitly promotes asymmetric 

connections, while bi-directional connections are essential in auto-associative networks to allow the 

recall of a pattern from any partial cue. The asymmetric nature of STDP does make it particularly 

suitable for the storage and retrieval of sequences, which is a key feature of associative memory. It 

might be suggested that this plasticity rule is therefore more suitable for processing temporally coded 

input, which has much greater computational power than rate coded data (see Section 2.14). However, 

the majority of auto-associative network models of the hippocampus that have been developed thus far 

rely on rate-coded data, and these models have successfully replicated a range of functions that are 

ascribed to this brain region (see Section 3.12). It seems plausible that a dual code may exist; allowing 

the CA3 region to process both temporal and rate coded input (i.e. dynamic sequences and static 

patterns) in order to create mnemonic associations. As all forms of STDP are known to selectively 

potentiate temporal correlations (see Sections 2.16 to 2.21), identifying which forms can also 

selectively potentiate firing rate correlations will allow the development of a single plasticity model 

that can process this dual code.  

 

Hence, if STDP is to operate successfully within a discrete auto-associative network model of the 

hippocampus, then it must replicate the properties of previous, rate-coded models of Hebbian learning 

and LTP. This requires the potentiation of synapses which connect neurons that are concurrently firing 

at a higher than background rate. This has been identified as an area where many previous models of 

STDP might fail, as they produce either a decrease or no change in mean synaptic weights with 

increased pre-synaptic firing rates (see Sections 2.17 and 2.18). Simultaneously, it is preferable that 

STDP can generate hetero-synaptic depression at lower firing rates, so that synaptic weights are 



maintained within a stable and responsive range, and redundant connections can be erased. The 

plasticity model must also operate stably, and create a stable weight distribution, so that network 

operation can proceed unsupervised, although some external mechanism (such as feedback inhibition) 

may contribute to this process. Each of these processes are effectively characterised by the BCM model 

(see Section 2.9), which allows the homeostatic control of potentiation and depression processes on a 

long term basis by modulation of the modification threshold.  

 

4.4 Experimental Aims: The Network Model 

As this research is directly related to the postulated function of CA3, the artificial neural network 

employed will be consistently inspired by neurobiological data from this brain region. Neurons in the 

CA3 region are known to fire both single spikes and short, high frequency bursts of action potentials in 

vivo (McNaughton, Barnes and O‟Keefe, 1983; Debanne, Gahwiler and Thompson, 1998; Staba et al., 

2002; Kobayashi and Poo, 2004). The spiking model used in this research is capable of replicating both 

firing patterns, and this will allow the impact that each has on network dynamics to be explored 

(Izhikevich, 2004). It is also known that firing rates in the CA3 region are generally lower than 

elsewhere in the cortex – varying between a background firing rate of ~1Hz and an active firing rate of 

10 to 20Hz. This might help to stabilise the network by reducing recurrent excitation, and assist the 

process of pattern separation by restricting the capability of generating recall activity to very strong 

synapses (Rolls and Treves, 1998). Hence, attention will be focussed on relatively low firing rates 

during the simulations carried out in this research. The level of recurrent connectivity in CA3 is 

estimated to be between 2 and 20% in vivo (Rolls and Treves, 1998; Eichenbaum, 2004; Amaral and 

Lavenex, 2007; Rolls, 2008) and up to 33% in cultures of hippocampal neurons (Debanne, Gahwiler 

and Thompson, 1998). In the simulations presented here, however, a wider variety of connectivity will 

be examined, both to assess any impact that this may have on network dynamics, and because fully 

connected networks have most frequently been employed in previous auto-associative modelling 

studies. 

 

Each neuron in the network model is assigned an axonal delay, randomly chosen from a range which is 

representative of the CA3 region. This seems a prescient approach to examining a plasticity model 

which places a particular emphasis on temporal coding. The presence of strong inhibitory input is a 

characteristic of the CA3 region which may also play a critical role in synaptic plasticity. A subset of 

inhibitory neurons will therefore be incorporated into these network simulations, comprising 20% of 

the total number of neurons therein. This figure is in line with both previous modelling studies and 

estimates of the ratio of GABA-ergic to pyramidal neurons in the CA3 region (Izhikevich, 2006). The 

inhibitory neurons in the network model examined here are governed by fast spiking dynamics, which 

are believed to correspond most closely to those observed in biological studies (Izhikevich, 2004; 

Izhikevich and Edelman, 2008). In these simulations, only constant mean firing rates of inhibitory 

neurons will be examined, although feedback inhibition is more likely to operate in the hippocampus in 

vivo, and might provide a more efficient method of maintaining stable neural and synaptic dynamics in 

a recurrent neural network. Feedback inhibition has also been commonly employed in previous auto-



associative modelling of the hippocampus (i.e. Rolls, Stringer and Trappenberg. 2002). Similarly, the 

plasticity of inhibitory synapses will not be examined, although such a process is known to occur in the 

hippocampus (see Kullman and Lamsa, 2007 for a review). 

 

4.5 Experimental Aims: The Plasticity Model 

While the most often studied synapses in the hippocampus have been those of the Schaffer collaterals 

which terminate on CA1 pyramidal cells, there has been sufficient research into the properties of the 

associative/commissural (A/C) recurrent synapses of the CA3 region to largely characterise their 

plasticity. Where there is an absence of conclusive biological data, each plausible possibility will be 

examined, with the hope that emergent dynamics may be matched with those observed empirically. 

Synaptic plasticity of the A/C synapses is known to be NMDAr-dependent, requiring both post-

synaptic depolarisation and pre-synaptic glutamate release (Debanne, Gahwiler and Thompson, 1998; 

Kobayashi and Poo, 2004; see Sections 2.4 and 2.15). It is well known that this form of plasticity is 

effectively dictated by elevations in the level of intracellular Calcium concentration. A common 

approach to replicating the various non-linearities which relate to STDP in real networks with realistic 

input is to directly simulate intracellular Calcium dynamics (see Section 2.19). Conversely, the aim of 

this research is to identify which, if any, of the more abstract STDP implementations can be reconciled 

with these properties, without resort to a more complex process of modelling glutamate receptor 

kinetics, intracellular Calcium stores and/or neurotransmitter release. This phenomenological plasticity 

model can be implemented without significant computational cost, while being able to replicate the key 

emergent properties of synaptic plasticity observed in the CA3 region. Similarly, rather than focusing 

this investigation on the more complex mechanisms of STDP, such as its dependence on dendritic 

location (see Section 2.15), this research will concentrate on how the plasticity rule might mediate the 

functional role required of it within an auto-associative network model.  

 

4.5.1 Weight Dependency 

Both additive and multiplicative STDP implementations will be examined, to allow a comparison of 

the network dynamics produced with and without weight dependent plasticity. Although there is now a 

substantial body of evidence to suggest that the degree of synaptic potentiation in vivo is dependent on 

initial strength, it is equally clear that the synaptic competition which arises from an additive rule is 

attractive from a functional standpoint (see Section 2.18). Indeed, the observation that NMDA receptor 

trafficking stabilises synaptic weights in the hippocampus (see Section 2.9) might suggest that additive 

STDP creates a more realistic simulation of long-term synaptic dynamics in this region. While 

multiplicative STDP generally produces a unimodal distribution of synaptic weights that closely 

resembles that found in vivo, a combination of additive STDP and a Gaussian distribution of weight 

limits could also account for this observation, and the saturation of synaptic potentiation processes 

could explain the reduced potentiation of strong synapses. Although a number of multiplicative STDP 

rules have previously been examined (see Section 2.18), it appears that little functional difference 

exists between them, and hence only a single implementation, with an inverse exponential dependence 

of potentiation on synaptic weight, will be employed in this research. Previous studies have suggested 



that some form of interpolation between additive and multiplicative STDP rules might offer attractive 

functionality, and while this remains an intriguing possibility, it will not be examined in this research. 

 

4.5.2 Size of Potentiation and Depression Windows 

It is well documented that the exact profile of the asymmetric learning window which characterises 

STDP can have a profound effect on emergent behaviour (see Section 2.17). Empirical data suggests 

that the time window of depression is significantly longer than that of potentiation in the CA3 region - 

75ms and 25ms respectively, according to the investigations of Debanne, Gahwiler and Thompson 

(1998). However, several different ratios of STDP time constants will be tested in this research, in 

order to more fully characterise the emergent behaviour of the model. Similarly, several different ratios 

of the maximum amount of potentiation or depression which can be induced by a single spike pair (i.e. 

A+ and A- in Figure 2.4) will be examined. It is more difficult to estimate these figures from empirical 

data, particularly as values are usually expressed as relative changes following repeated pairings and, 

as discussed previously, initial weight may have some effect on the degree of change. However, the 

majority of evidence suggests that both A+ > A- and τ- > τ+ in the hippocampus in vivo (Bi and Poo, 

1998; Debanne, Gahwiler and Thompson, 1998; see Dan and Poo, 2006 for a review of other data). For 

the data of Bi and Poo (1998), which was obtained from dissociated hippocampal cultures, the 

parameters which define the STDP window were estimated as A+=0.86; A-=-0.25; τ+=19ms and τ-

=34ms – these representing relative changes following 60 pairings (Bi, 2002). Hence, it is clear that the 

absolute magnitude of change in synaptic strength for a single spike pair is very small - in fact, it has 

often been speculated that single spike pairs cannot induce plasticity, as statistically significant weight 

change cannot be measured. It is possible that only the repeated stimulation of Calcium triggered 

pathways is sufficient to induce significant L-LTP. However, previous computational modelling of 

STDP has demonstrated that the relative values of the parameters which define the asymmetric learning 

window affect qualitative behaviour, while the scale of the values only affects the speed with which 

stable or asymptotic regimes are achieved (i.e. Burkitt, Meffin and Grayden, 2004). 

 

What is also known, from some of the studies that originally characterised the spike-timing dependency 

of synaptic plasticity in the hippocampus, is that synchronous pre- and post- synaptic spiking should 

lead to almost maximal levels of depression (Debanne, Gahwiler and Thompson, 1998; see Section 

2.15). This observation is incorporated into the plasticity model employed in this research at all times. 

A separate, but related, consideration regards the maximum overall change that a synapse can undergo 

before it becomes saturated. Data from CA3 cultures and slices indicate that potentiation can increase 

the strength of a typical synapse by as much as ~1000% (Debanne, Gahwiler and Thompson, 1998). 

This figure is used to determine the absolute values of A+ and A- in relation to the maximum possible 

weight of a synapse (i.e. A± should be approximately 10% of the maximum weight limit). 

Consequently, a modelling choice must also be made regarding the maximum value that synaptic 

weights can achieve. This is likely to have a direct effect on the level of recurrent excitation (and 

therefore spike triggering) that exists in the network. Again, it is difficult to estimate a value for this 

parameter from biological data, and so several will be examined. However, it is clear from empirical 



studies that single recurrent synapses of the CA3 region are incapable of solely producing post-synaptic 

firing, and so this constraint will be observed in all simulations presented (Kobayashi and Poo, 2004). 

 

It is also important to note that in all simulations with additive STDP, the value of the maximum 

weight limit is fixed and uniform across all excitatory synapses. While there is little direct biological 

data available to inform this modelling decision, it seems likely that differences in the size of pre-

synaptic boutons or concentration of post-synaptic receptors might endow different synaptic contacts 

with a different range of possible strengths. This feature is omitted here to avoid unnecessary 

computational complexity, although it is likely to represent an important direction for future research. 

 

More generally, in each simulation examined in this research, the form of STDP is assumed to be fixed, 

while some empirical data suggests that the profile of the asymmetric learning window is malleable and 

directly affected by spike pairing frequency, for example (e.g. Sjostrom, Turrigiano and Nelson, 2001). 

By examining fixed STDP implementations across a range of mean firing rates, it is hoped that a form 

of the plasticity rule which can mediate rate-coded Hebbian learning without resort to dynamic 

modulation can be identified. This will subsequently ease the computational burden of implementing 

this plasticity rule in future auto-associative network models. Furthermore, using fixed forms of STDP 

should allow those particular features of the plasticity rule which directly influence emergent dynamics 

to be more easily identified, thus providing a broader insight into how future models of STDP might be 

dynamically manipulated to produce desired behaviour. 

 

4.5.3 Spike Pair Restrictions 

The relative paucity of empirical data regarding STDP, particularly within the CA3 region, means that 

there are a number of features for which there is little or no biological evidence available to direct 

modelling decisions. The contribution of different spike pairings to overall plasticity at a synapse, for 

example, has yet to be characterised in the hippocampus in vivo or in vitro (see Section 2.20). Relevant 

data has been obtained from the visual cortex, but differences between the basic properties of synaptic 

plasticity in these two distinct cortical regions suggests that generalisation is inappropriate (Froemke 

and Dan, 2002; Wang et al., 2005; Froemke et al., 2006). There is some inferential evidence to support 

a temporally restricted spike pairing implementation (i.e. one in which the state of pre- and post- 

synaptic neurons is effectively reset by each action potential), as previous computational modelling 

studies have demonstrated that this form of STDP best replicates data obtained from biological studies 

of both the visual cortex and hippocampus (Sjostrom, Turrigiano and Nelson, 2001; Izhikevich and 

Desai, 2003; Burkitt, Meffin and Grayden, 2004). In order to provide a more comprehensive 

assessment of the dynamics incurred by STDP, however, a variety of spike pair restriction schemes will 

be examined in this research, as these represent biologically plausible adaptations of STDP which 

might have a drastic effect on emergent dynamics. 

 

One further issue that requires consideration is the observation that prolonged periods of pre-synaptic 

activity, with no post-synaptic firing, produces robust LTD in cultures of CA3 pyramidal cells. In 



particular, the delivery of pre-synaptic spiking at a rate of 3Hz for a period of 3 minutes has been 

shown to depress synapses to ~64% of their initial amplitude (Debanne, Gahwiler and Thompson, 

1998; Unni et al., 2004). This form of plasticity is also generally incorporated into auto-associative 

network models, whereby synapses are weakened due to the negative Hebbian correlation between pre- 

and post- synaptic firing rates. Under standard models of STDP, however, this depression cannot 

possibly be produced in the absence of post-synaptic spiking, although it is known that pyramidal cells 

in CA3 display spontaneous activity at a rate of ~1Hz, which suggests that a period of three minutes 

without activity might be biologically unrealistic (Rolls and Treves, 1998; Rolls, 2008). While no 

explicit attempt is made to model this depression, generated by pre- but not post- synaptic activity, 

each STDP implementation examined will be assessed for its ability to replicate this feature.  

 

4.5.4 Synaptic Scaling and Redistribution 

There is no evidence for a process of synaptic redistribution taking place in the hippocampus, and so 

this homeostatic mechanism will not be examined (see Section 2.11). There is, however, evidence for a 

process of synaptic scaling, although this is most frequently obtained by inducing unrealistic situations 

such as total activity blockade or extremely high firing rates across a network (see Section 2.10). The 

adjustment of synaptic weights is a long-term process which is suspected to retain the weight 

distribution developed by Hebbian learning mechanisms. Because the focus of this research is on the 

rapid process of storing externally applied activity patterns via synaptic plasticity, slower processes that 

regulate the overall activity levels within the network in the long-term are of less concern. Previous 

studies have also demonstrated that a process of synaptic scaling does not affect the qualitative 

properties of STDP, only the time taken to reach an asymptotic state and the quantitative aspects of 

weight distributions (van Rossum, Bi and Turrigiano, 2000; Burkitt, Meffin and Grayden, 2004). It 

seems unlikely that synaptic scaling acts to regulate levels of neural activity in recurrent networks, and 

it has often been suggested that feedback inhibition, which is rapid, flexible and affects both neural 

activity and synaptic plasticity, represents the main stability mechanism operating in the CA3 region 

(see Section 2.12). While synaptic scaling may be an important feature to integrate into the model in 

the future, therefore, this research will aim to exploit the natural competition incurred by STDP and the 

effects of inhibitory input to maintain the homeostatic control of neural firing rates and synaptic 

weights in an operational regime. 

 

4.5.5 Metaplasticity 

Rather than adjusting synaptic weights directly, evidence also suggests that changes in the ability to 

induce synaptic plasticity are incurred by the history of neural activity. This process of metaplasticity is 

best characterised by the BCM formulation, and previous analytical studies have demonstrated that the 

parameters of STDP might be directly reconciled with the position of the sliding modification threshold 

(i.e. Izhikevich and Desai, 2003; see Section 2.19). Although this process, like synaptic scaling, is more 

directly related to the long-term development of synaptic weights, and unlikely to mediate short term 

network stability, the fact that it explicitly affects the induction of plasticity makes it more relevant to 

this research. Metaplasticity processes might also serve to stabilise or destabilise synaptic weight 



distributions, and thereby play a more explicit role in declarative memory processing than merely 

restricting synaptic weight values to a certain range via slow modulation. Hence, while the modulation 

of a BCM-type modification threshold will not be implemented in this research, possible methods by 

which this form of metaplasticity might be introduced will be discussed. 

 

4.5.6 The Timescale of Synaptic Dynamics 

There are a number of key assumptions made in this research. One major simplification that is inherent 

in the network model employed here is that plasticity processes occur instantaneously – that is, changes 

in synaptic weight are incurred at the point of pre- or post- synaptic spiking. While it takes a few 

minutes for potentiation or depression to be manifested in real neural networks, this simplification is in 

line with the vast majority of previous computational modelling studies. In effect, only the early stages 

of plasticity (i.e. E-LTP, see Section 2.4) are being investigated. These changes are (relatively) rapidly 

induced, but unstable, as they can be easily overwritten by subsequent activity patterns. It is worth 

bearing in mind that, should the potentiation or depression of a synapse persist for a longer period, then 

it will be rendered less vulnerable to ongoing neural activity by the consolidation process of L-LTP. 

While these distinctions between different stages of long-term plasticity and their relative stability will 

not be explicitly examined, the transition from E-LTP to L-LTP represents a mechanism by which all 

mnemonic traces – no matter how unstable – might be consolidated only a relatively short period (~30-

45 minutes) after the original experience which induced them. 

 

A related point regards the synapse model employed in this research, which transfers current from pre- 

to post- synaptic terminals immediately at the point of afferent firing (see Section 5.2). While this 

method omits the stochastic and dynamic aspects of synaptic transmission observed in real neural 

networks, it is in line with previous computational modelling studies of numerous cortical regions 

(such as pulse coupled networks - see Johnson, Padgett and Ovidmar, 1999). Furthermore, the aim of 

this research is to create an abstract model of auto-associative learning using STDP, and in order to 

limit computational complexity and avoid unnecessary complications, this assumption seems justified.  

 

4.6 Network Input 

The form of external input applied to the network during simulations forms the distinction between the 

different stages of testing in this research. Initially, independent stochastic spike trains with uniform 

mean firing rates will be provoked in the network by the consistent application of random levels of 

excitatory current. This is in line with several previous studies of STDP (i.e. van Rossum, Bi and 

Turrigiano, 2000; Song, Miller and Abbott, 2000) and should allow the properties of the plasticity 

model within a recurrent network to be characterised. However, it is important to note that the presence 

of iterant excitation and inhibitory input means that spiking activity within the network may not always 

adhere to a Gaussian distribution of inter-spike intervals, although stochastic spike timings are 

generated in a single neuron by the form of input used (see Section 5.2.2). Critically, spike triggering 

effects can become prominent – although the weight of individual synapses is constrained such that 

they are unable to solely provoke post-synaptic firing (see Section 4.5.2) – and persistent correlations 



between afferent and efferent spike timings may therefore arise. This methodology aims to compromise 

between a desire to characterise the dynamics incurred by STDP with independent stochastic pre- and 

post- synaptic spike trains, thus allowing comparisons with the BCM rule to be drawn, while also 

generating results that can inform auto-associative network modelling (which relies on spike triggering 

at recurrent synapses for the generation of recall activity) and be reconciled with biological data (where 

synaptic currents inherently affect the state of their target neurons).  

 

Secondly, tests which aim to more specifically relate the emergent properties of each STDP 

implementation to rate-coded Hebbian learning are carried out. In order to do this, the firing rates in a 

subset of the excitatory neurons in the network are elevated to ~20Hz, which is in line with firing rates 

observed in the CA3 region, while the remainder of excitatory neurons fire at a realistic background 

rate (~1Hz). The dichotomy in mean firing rates that exists among neurons in these simulations forms 

the critical distinction with the initial set of simulations. By examining the synaptic dynamics of 

various connections within the network, it should be possible to establish whether processes of 

selective potentiation, hetero-synaptic depression (particularly of synapses with high pre- and low post- 

synaptic firing rates) and the generation of strong bi-directional connections can be replicated by 

STDP. 

 

Finally, those forms of STDP which best provide the necessary emergent features will be implemented 

within a simple auto-associative network, inspired by previous modelling studies of the hippocampus 

and declarative memory function. Several sparse patterns of external input which elevate the mean 

firing rate in foreground neurons to ~20Hz will be repeatedly applied to the network, while background 

activity proceeds at a mean firing rate of ~1Hz in all other neurons. Following this learning period, 

partial cues based on these previously learned patterns will be used to assess whether concise and 

significant recall activity can be generated in the network via a process of pattern completion. At this 

stage, only discrete, binary and orthogonal activity patterns will be examined, because these are more 

easily stored and recalled, and because models which employ this form of input have most often 

implemented synaptic plasticity in previous auto-associative network modelling studies. The synaptic 

and neural dynamics present in the network during these simulations will also be examined, and a 

comparison made with the properties of both previous auto-associative network models and 

experimental data from the CA3 region that have been described in this and the preceding chapters. 

 

Importantly, during each of these simulations, synaptic plasticity and recurrent excitation are 

continually active, while in the majority of previous auto-associative modelling studies they are 

arbitrarily separated. This assumption aims in inspired by biological realism, as it seems unlikely that 

processes of learning and recall are behaviourally distinct or mutually exclusive. However, it is 

important to note that there may be several biological realistic methods for modulating neural and 

synaptic dynamics in order to dynamically separate these processes (e.g. Hasselmo, 2006), and this 

may represent a critical direction for future research. 

 



 

 

4.7 Conclusions 

In the previous chapter, it was demonstrated that auto-associative networks can successfully replicate 

various aspects of the postulated function of the hippocampus in declarative memory. However, the 

discussion presented in this chapter also makes it clear that several issues regarding the biological 

realism of these models exist. Primary to the interests of this work is the fact that STDP has rarely been 

examined within a recurrent neural network and no known attempts have been made to reconcile this 

temporally asymmetric learning rule with emergent auto-associative function. Because discrete auto-

associative network function relies so critically on the properties of rate-coded Hebbian learning rules, 

these models also represent an ideal framework in which to investigate how STDP might mediate 

synaptic plasticity based on correlations between pre- and post- synaptic firing rates. All forms of 

STDP are ideally suited to selectively process temporally correlated data, and so the identification of an 

STDP implementation which can also process rate-coded data should increase the functional versatility 

of this plasticity rule. The discussion presented in this chapter suggests that the STDP model might also 

improve the biological realism of neural firing within a recurrent ANN. By constraining modelling 

decisions based on an a priori knowledge of the neural and synaptic dynamics that exist in the CA3 

region, an auto-associative network model of declarative memory function with a firmer basis in 

modern neurobiology might consequently be developed. Furthermore, this novel auto-associative 

network model should exhibit significantly improved flexibility and computational power, and might 

have many applications beyond those required for modelling declarative memory and postulated 

hippocampal function.  

 

In the following chapter, a more specific description of the synaptic and neural dynamics implemented 

in these simulations will be presented. In the subsequent chapters, simulations using this model will 

proceed in three main stages. Firstly, in chapter six, numerous common STDP implementations will be 

examined using uniform levels of Poissonian activity in order to provide a comprehensive description 

of the emergent dynamics of the plasticity rule within a spiking, recurrent neural network. Secondly, in 

chapter seven, the nature of external input will be adjusted in order to more specifically assess the 

ability of these STDP implementations to process firing rate correlations in a manner analogous with 

previous Hebbian learning rules. Finally, in chapter eight, an examination of any STDP 

implementations which can mediate rate-coded processing and replicate other known features of 

synaptic plasticity in the CA3 region will be employed within a simple auto-associative network model, 

with the aim of providing further insight into the functional performance of STDP within this context. 

In chapter nine, a discussion of the main results of this research, the novel contributions to the study of 

computational neuroscience that it has presented, and the possible directions of future research will be 

described.  
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